April 26, 2006 ERI 210111CM.L36

Ms. Jennifer C. Sedlachek ExxonMobil Refining & Supply – Global Remediation 4096 Piedmont Avenue #194 Oakland, California 94611

SUBJECT

Laboratory Analysis Results of Groundwater Treatment System, First Quarter 2006 Former Exxon Service Station 7-0277

1101 Yulupa Avenue, Santa Rosa, California

City of Santa Rosa Industrial User Permit No. SR-GW6590

Ms. Sedlachek:

At the request of Exxon Mobil Corporation (Exxon Mobil), Environmental Resolutions, Inc. (ERI) is submitting this letter to the Santa Rosa Subregional Wastewater Management System as the Quarterly Self-Monitoring Report for first quarter 2006 for the groundwater extraction and treatment (GET) system located at 1101 Yulupa Avenue, Santa Rosa, California. This report covers activities from December 22, 2005, through March 30, 2006.

ERI began operating the GET system under City of Santa Rosa Discharge Permit No. SR-GW6590 on February 17, 2005. The GET system extracted, treated, and discharged approximately 780,285 gallons in compliance with permit conditions during the reporting period.

ERI collects influent (before treatment) and effluent (after treatment) samples on a monthly basis from the system and submits the samples for analysis to a California state-certified laboratory under Chain-of-Custody protocol. Samples are analyzed for total petroleum hydrocarbons as gasoline (TPHg) using Environmental Protection Agency (EPA) Method 8015B; benzene, toluene, ethylbenzene, and total xylenes (BTEX), methyl tertiary butyl ether (MTBE), and volatile organic compounds using EPA Method 624. ERI also collects samples from the intermediate 1 (between the first and second carbon vessels) and intermediate 2 (between the second and third carbon vessels) sample locations to monitor carbon performance. Samples collected from the intermediate locations are analyzed for TPHg, BTEX, and MTBE using the methods previously listed.

Operation and performance data for the GET system is included in Table 1. Completed critical parameters report forms for each monthly sampling event, are included in Attachment A. Laboratory analysis reports and Chain-of-Custody records for each monthly sampling event are included in Attachment B.

DOCUMENT DISTRIBUTION

ERI recommends forwarding a copy of this report to:

Mr. Chris Murray Subregional Water Management System Industrial Waste Section 4300 Llano Road Santa Rosa, California 95407

Ms. Jo Bentz California Regional Water Quality Control Board North Coast Region 5550 Skylane Boulevard, Suite A Santa Rosa, California 95403

Please contact Mr. James F. Chappell, ERI's project manager for this site, at (707) 766-2000 with any questions.

> Resolutions, Inc. Senior Staff

James F. Chapper **Project Manager**

Attachments:

Table 1:

Operation and Performance Data for Groundwater Extraction and

Treatment System

Attachment A: Critical Parameters Report Forms

Attachment B: Laboratory Analysis Reports and Chain-of-Custody Records

Former Exxon Service Station 7-0277 1101 Yulupa Avenue Santa Rosa, California (Page 1 of 5)

		Totalizer	Total	Average		 		Laborato	ry Analytical	Results				Removal		ne Removal		BE Removal
Date	Hours	Effluent	Volume		Sample	TPHd	TPHg	MTBE	В	T	E	Х	1	Cumulative	Per Period	Cumulative	Per Period	Cumulative
Date		(len)	(gal)	(map)	ID	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(lbs)	(lbs)	(lbs)	(fbs)	(lbs)	(lbs)
12/20/02	NPDES d	ischarge lett	er received 12	2/20/02 aut	horizing discha	arge of treate	d groundwate	r. Permit val	id 12/20/02.									
40/20/02	System of	ff on arrival	Processed at	oproximate	ly 3,250 gallon	s from holdir	a tank through	h GRS. Dow	n on departu	re.								
12/30/02	0	10,130	FTOCESSEG A	Sproximato	, 0,200 gamen													
01/13/03	System of	ff on arrival.	Processed w	ater in hold	ing tank. Syst	tem running o	n departure.			.0.50	-0.50	-0.50	- 0.000	- 0.006	< 0.0001	< 0.0001	0.001	0.001
01/13/03	28	14,130		2.38	W-INF	<51	< 50	11	< 0.50	<0.50	<0.50	<0.50 <0.50	< 0.006	< 0.006	< 0.0001	< 0.0001	0.001	0.001
					W-INT 1	<50	< 50	< 0.5	< 0.50	<0.50	<0.50							
					W-INT 2	<51	< 50	< 0.5	< 0.50	<0.50 <0.50	<0.50 <0.50	0.77a <0.50						
					W-EFF	<51	< 50	< 0.5	< 0.50	\0.50	~0.50	~0.50						
01/27/03			ival and depa															
01/27/03	357	94,550		4.07														
02/03/03			ival and depa		M/ INIT	-54	66	38	2.1	<0.50	<0.50	1.1	< 0.053	< 0.059	< 0.001	< 0.001	0.022	0.024
02/03/03	528	123,260		2.80	W-INF	<51 <48	< 50	< 0.50	< 0.50	<0.50	<0.50	<0.50	0.000	3.000				
					W-INT 1 W-INT 2	<48	< 50	< 0.50	< 0.50	<0.50	<0.50	<0.50						
					W-EFF	<48	< 50	< 0.50	< 0.50	<0.50	<0.50	<0.50						
					VV~EFF	740	· 50	1 0.00	. 0.00	0.00	5.55							
02/04/03	System ru	inning on arri	ival and depar	ture. Trou	bleshoot influe	ent totalizer.												
02/04/03	552	126 550		2 28							a							
02/10/03	System ru	inning on arri	ival and depar	ture. **Re	placed influent	t totalizer end	ling old readin	ng 190,140. N	vew totalizer	begins at 1	u galions	•						
02/10/03	690	142,010		1.87														
02/18/03	System of 858	f on arrival (: 154,830	station owner	shut down 1.27	due to noise).	Reset and r	estarted syste	ern.										
02/19/03	System ru 885	inning on arri 156,410	ival and depar	ture. 0.98														
02/26/03	1049	161.800	ival and depar	0.55														
03/03/03	-	166 017		_	and took confir													
03/06/03	System of	f on arrival a 166,810	nd departure.	Drained L	PC's for carbo	n changeout	3@500lbs. S	Stored three o	irums of wat	er onsite.								
03/17/03	System of 1175	f on arrival a 166,810	nd departure.	0.0														
03/24/03	System of																	
10/27/03					ite Baker Tan	k.												
10/28/03			scharging to E															
	1191	166,010		0.0														
10/31/03			ode not disch															
	1264	166,000	1 1 2	0.0														
11/07/03			ode not disch	arging. 0.0														
44/00/00	1268	166,000	haraa ta Baka		ollected sampl	e h												
11/03/03	NM	166,059	narge to bake	0.0	W-INF	63c	< 50	1.6	< 0.50	<0.50	<0.50	< 0.50	< 0.021	< 0.079	< 0.000	< 0.002	0.007	0.031
	IAIAI	100,009		0.0	W-BIO-INF	NM	NM	NM	NM	NM	NM	NM						
					W-BIO-EFF	57c	13,000	35000	< 250	<250	<250	<250						
					W-INT 1	< 51	< 50	0.15	< 0.50	<0.50	<0.50	<0.50						
					W-INT 2	< 48	< 50	0.21	< 0.50	<0.50	<0.50	<0.50						
					W-EFF	< 51	< 50	0.17	< 0.5	<0.50	<0.50	<0.50						
11/10/03	Started sv	stem to disc	harge to Sprir	g Creek. (Collected sam	ples.												
	nm	166,059		0.0														

Former Exxon Service Station 7-0277 1101 Yulupa Avenue Santa Rosa, California (Page 2 of 5)

								Laborator	Analytical I	Poculte			TPH6	Removal	Benzei	ne Removal	M [*]	BE Removal
		Totalizer	Total	Average		TPHd	TPHq	MTBE	y Allalytical i B	T	Е	Х	Per Period	Cumulative	Per Period	Cumulative	Per Period	Cumulative
Date	Hours	Effluent (gal)	Volume (gal)	(gpm)	Sample ID	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(lbs)	(!bs)	(lbs)	(lbs)	(lbs)	(lbs)
11/17/03	System n	mning on arri	val and depart	ure. Colle			<u> </u>	,, <u> </u>										
11/1/700	1438	177,460		1.1														
11/24/03	System rt 1604	inning on arri 178,680	val and depart	ture. Colle 0.1	cted samples													
12/01/03	1769	179,270	val and depart	0.1														
12/15/03	1771	179,440	il, replaced RV	0.0														
12/22/03	System d	own on arriva	l (H/H well bo	x). Reset	and restarted	system, colle	cted monthly	y samples b	- 0.50	<0.50	<0.50	<0.50	< 0.006	< 0.086	< 0.0001	< 0.002	< 0.000	< 0.031
	1864	180,660		0.1	W-INF	< 48	< 50	< 1	< 0.50 NM	<0.50 NM	NM	NM	< 0.000	0.000	4 0.0001	- 0.002	0.000	• • • • • • • • • • • • • • • • • • • •
					W-BIO-INF	NM	NM	NM 7000.00	< 0.50	< 0.50	< 0.50	<0.50						
					W-BIO-EFF	< 48 < 48	3,800 < 50	< 0.50	< 0.50	<0.50	<0.50	<0.50						
					W-INT 1 W-INT 2	< 48	< 50	< 0.50	< 0.50	<0.50	<0.50	<0.50						
					W-EFF	< 47	< 50	< 0.50	< 0.50	<0.50	< 0.50	<0.50						
40/00/00	Cuntom d	our on arriva	i (H/H well bo	v) Reset			- 00	0.00	****									
12/29/03	1897	184,700	·	0.4														
01/12/04	1964	192,500	i (H/H well bo	0.4														
01/26/04			val and depart		tea montniy G W-INF	KS samples < 51	< 50	12	< 0.50	<0.50	<0.50	<0.50	< 0.017	< 0.102	< 0.0002	< 0.002	< 0.002	< 0.033
	2281	220,840		1.4	W-BIO-INF	< 51	< 50	62	< 0.50	<0.50	<0.50	<0.50						
					W-BIO-EFF		930	1600	< 25	<25	<25	<25						
					W-INT 1	< 51	< 50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50						
					W-INT 2	< 50	< 50	< 0.50	< 0.50	< 0.50	<0.50	<0.50						
					W-FFF	< 50	< 50	< 0.50	< 0.50	< 0.50	<0.50	<0.50						
02/09/04	System ru	inning on arri	val and down	on departu	re for carbon	changeout (3	@ 500 lbs,	virgin coconut a	acid washed). Collecte	d monthly	samples.					< 0.0004	< 0.033
02000.	2577	228,430		0.4	W-INF	< 50	< 50	< 0.50	< 0.50	<0.50	~ 0.50	~0.50	< 0.009	< 0.111	< 0.0001	< 0.0020	< 0.0004	< 0.033
					W-BIO-INF	57c	150	210	< 0.50	<0.50	<0.50	<0.50						
					W-BIO-EFF		770	1800	< 5.0	<5.0	<5.0 <0.50	<5.0 <0.50						
					W-INT 1	< 51	< 50	< 0.50	< 0.50 < 0.50	<0.50 <0.50	<0.50 <0.50	<0.50						
					W-INT 2	< 51	< 50 < 50	< 0.50 < 0.50	< 0.50	<0.50	<0.50	<0.50						
				- 6	W-EFF	< 51		< 0.50	V 0.50	\0.50	~0.50	~0.00						
02/23/04	System do	own on arriva	and departur	e for carbo	on changeout a	ana nyarawor Implos	1.											
03/01/04	System do	own on arriva	l and departur I and departur	e, collecte	u viv-assay so d hin-accay sa	mnles												
03/03/04 03/10/04	System do	on arriva	land departor	e, collecte vash recir	ulation (not di	scharging), f	o lower pH o	f carbon vesse	ls.									
03/10/04	System do	own on arriva	i, set up acid i I, continued ac	id wash n	rocedure on c	arbon vessel	S.											
03/18/04	Complete	d acid wash o	f carbon vess	els, stable	at low 7's.													
03/22/04	System do	own on arriva	l and departur	e. repaired	secondary co	ntainment, r	eady to re-in	noculate bio an	d discharge	to storage	tank.							
00/01/07	-																	
05/19/04	Collected	full sample ru	ın from systen	n excludino	Bio-Assay. I	√ot dischargi	ng until auth	orization is gran	ited from re	gional boar	d.			- 0 444	< 0.0000	< 0.0020	< 0.0000	< 0.033
	2577	228,430		0.0	W-INF	< 50	< 50	2.2	< 0.50	<0.50	<0.50	<0.50	< 0.000	< 0.111	< 0.0000	< 0.0020	< 0.0000	< 0.055
					W-BIO-EFF		< 50	1.4	< 0.50	<0.50	<0.50	<0.50						•
					W-INT 1	< 50	< 50	1.4	< 0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50						
					W-INT 2	< 50	< 50	1.1 < 0.50	< 0.50 < 0.50	<0.50	<0.50	<0.50						
					W-EFF	< 50	< 50	~ 0.50	~ U.SU	~0.00	70.00	-0.00						
6/7/04-6/11/04			nples, (Cerioda	apnnia dut	naj. Passeu t	ID IBSE.												
07/21/04	Discharge	d treated wat 228,800	.⊎1 .	1.1														

Former Exxon Service Station 7-0277 1101 Yulupa Avenue Santa Rosa, California (Page 3 of 5)

		— • • • • •	7-4-1	A				Laborato	ry Analytical	Regulte			TPH	Removal	Benze	ne Removal	M	TBE Removal
I _		Totalizer	Total	Average		TOUR	TOUG	MTBE	B	T	Е	х	Per Period	Cumulative	Per Period	Cumulative	Per Period	Cumulative
Date	Hours	Effluent	Volume		Sample	TPHd	TPHg						1			(lbs)	(lbs)	(lbs)
1		(gal)	(gal)	(gpm)	ID	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(lbs)	(lbs)	(lbs)	(IDS)	(105)	(109)
07/22/04	Discharg	ed treated wa	ter.															
	-	231,340		1.8														
07/26/04	Collected	l bioassav sa	mples for fat I	nead larvae	and selanasti	rum algae. Bo	oth tests pas	sed.										
09/08/04		ed treated wa				•												
03/00/04	Discharg	233,360	itor.	0.0														
00/00/04	Custom 6		aiting cowerd		ermit and syste	em retrofit Fi	nal totalizer	reading is 23	3.360									
09/08/04	Systems	siut down aw	aiting sewer u	ischarge p	ornik and bysk	bili rodrolit.	rici totalizat		-,									
00117/05	0			+loto	Started syste	om and collect	od camples	Water store	ed in tank on	discharge								
02/17/05				t complete.	Started Syste	em and coneci	- 50 0	1.60	< 0.50	<0.50	<0.50	<0.50	< 0.002	< 0.114	< 0.00002	< 0.0020	0.0001	< 0.033
02/17/05	2603	406	233,766		W-INF		< 50.0			<0.50	<0.50	<0.50	· 0.002	٠ ٥.١١٦	· 0.00002	0.0020	0.0001	0.000
					W-INT1		< 50.0	1.10	< 0.50									
					W-INT2		< 50.0	< 0.50	< 0.50	<0.50	<0.50	<0.50						
					W-EFF		< 50.0	< 0.50	< 0.50	<0.50	<0.50	<0.50						
03/01/05	Discharg	ed water from	tank to sewe	r with City	of Santa Rosa	approval. Re	estarted syst	tem and left r	unning.									
03/01/05	2607	1,560	234,920	0.1					-									
03/03/05	2622	22,000	255,360	7.1	W-INF		< 50.0	6.20	< 0.50	0.7	<0.5	1.5	< 0.009	< 0.123	< 0.0001	< 0.0021	0.0007	< 0.034
00/00/00	2022	,,,,,	200,000		W-INT1		< 50.0	NA	< 0.50	0.5	<0.5	0.8						
					W-INT2		< 50.0	NA	< 0.50	<0.5	<0.5	<0.5						
					W-EFF		< 50.0	< 0.50	< 0.50	<0.5	<0.5	<0.5						
00/40/05	0000	04.070	200 020	7.2	A A - 171 I		4 00.0	. 0.00	0.00	0.0	0.0	0.0						
03/10/05	2828	94,870	328,230															
03/17/05	3484	124,520	357,880	2.9														
03/24/05	NM	130,100	363,460	0.6														
03/31/05	NM	140,324	373,684	1.0										. 0 400	- 0.0040	< 0.0040	0.0094	< 0.044
04/07/05	NM	189,664	423,024	4.9	W-INF		50.3	7.30	2.10	<1.00	<1.00	<1.00	< 0.070	< 0.193	< 0.0018	< 0.0040	0.0094	× 0.044
					W-INT1		< 50.0	NA	< 0.50	<0.5	<0.5	<0.5						
					W-INT2		< 50.0	NA	< 0.50	<0.5	<0.5	<0.5						
					W-EFF		< 50.0	< 1.00	< 1.00	<1.00	<1.00	<1.00						
04/14/05	NM	198,131	431,491	8.0														
04/21/05	NM	273,224	506,584	7.4														
04/28/05	NM	367,210	600,570	9.3														
05/05/05	NM	450,250	683,610	8.2	W-INF		65.3	6.90	2,60	<1.00	<1.00	<1.00	0.126	< 0.318	0.0051	< 0.0091	0.0154	< 0.059
05/05/05	IMM	450,250	003,010	0.2	W-INT1		< 50.0	2.00	< 1.00	<1.00	<1.00	<1.00	***					
							< 50.0	NA	< 1.00	<1.00	<1.00	<1.00						
					W-INT2					<1.00	<1.00	<1.00						
					W-EFF		< 50.0	< 1.00	< 1.00	\1.00	~1.00	\1.00						
05/12/05	NM	466,470	699,830	1.6														
05/19/05	NM	537,330	770,690	7.0														
05/26/05	NM	628,444	861,804	9.0														
06/02/05	NM	721,050	954,410	9.2														
06/09/05	NM	821,250	1,054,610	9.9	W-INF		139	5.60	4.70	< 0.50	<0.50	1.00	0.316	< 0.635	0.0113	< 0.0204	0.0193	< 0.078
00,00,00		3,	.,,-		W-INT1		< 50.0	2.20	< 0.50	< 0.50	< 0.50	<0.50						
					W-INT2		< 50.0	< 0.50	< 0.50	<0.50	<0.50	<0.50						
					W-EFF		< 50.0	< 0.50	< 0.50	<0.50	<0.50	<0.50						
00/40/05	616.4	040 000	1.153,280	9.8	AA-ELL		- 50.0	- 0.50	- 0.00	-0.00	.0.00	3.00						
06/16/05	NM	919,920																
06/23/05	NM	1,007,440	1,240,800	8.7														
06/30/05	MM	1,084,852	1,318,212	7.7			04.0	4.50	4.00	-1.00	-1.00	-4.00	0.070	< 0.014	0.0069	< 0.0272	0.0121	< 0.090
07/07/05	NM	1,108,585	1,341,945	2.4	W-INF		94.0	4.50	1.00	<1.00	<1.00	<1.00	0.279	< 0.914	0.0068	< 0.0272	0.0121	~ 0.080
					W-INT1		< 50.0	2.00	< 1.00	<1.00	<1.00	<1.00						
					W-INT2		< 50.0	< 1.00	< 1.00	<1.00	<1.00	<1.00						
					W-EFF		< 50.0	< 1.00	< 1.00	<1.00	<1.00	<1.00						
07/14/05	NM	1,194,084	1,427,444	8.5														
07/21/05	NM	1,231,536	1,464,896	3.7														
07/28/05	NM	1,280,000	1,513,360	4.8														
01120100	1.41/1	1,200,000	1,515,500	7.0														

Former Exxon Service Station 7-0277 1101 Yulupa Avenue Santa Rosa, California (Page 4 of 5)

								Laboratas	. Applicat	Doculto			TDH _C	Removal	Ronze	ne Removal	M	TBE Removal
	· .	Totalizer	Total	Average	01-	TOUL	TOU.		y Analytical B	T	Ε	х	Per Period	Cumulative	Per Period	Cumulative	Per Period	Cumulative
Date	Hours	Effluent	Volume		Sample	TPHd	TPHg	MTBE	-					(lbs)	(ibs)	(lbs)	(lbs)	(lbs)
1		(gal)	(gal)	(gpm)	ID	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(lbs) 0.129	< 1.043	< 0.0018	< 0.0290	0.0069	< 0.097
08/04/05	NM	1,325,990	1,559,350	4.6	W-INF		47.8	3.06	< 1.00	<1.00	<1.00	<1.00	0.129	< 1.043	< 0.0016	< 0.0290	0.0009	< 0.091
					W-INT1		< 50.0	1.95	< 0.500	<0.500	<0.500	<0.500						
					W-INT2		< 50.0	< 1.00	< 0.500	<0.500	<0.500	<0.500						
					W-EFF		< 50.0	< 0.50	< 1.00	<1.00	<1.00	<1.00						
08/11/05	NM	1,330,920	1,564,280	0.5														
08/18/05	NM	1,366,800	1,600,160	3.6														
08/25/05	NM	1,369,500	1,602,860	0.3														
				3.7														
09/01/05	NM	1,406,425	1,639,785		VAC PAIC		< 50.0	2.55	< 1.00	<1.00	<1.00	<1.00	< 0.035	< 1.077	< 0.0007	< 0.0297	0.0020	< 0.099
09/08/05	NM	1,410,620	1,643,980	0.4	W-INF		< 50.0	1.61	< 1.00	<1.00	<1.00	<1.00	0.000					
					W-INT1				< 1.00	<1.00	<1.00	<1.00						
					W-INT2		< 50.0	< 1.00										
					W-EFF		< 50.0	< 0.50	< 1.00	<1.00	<1.00	<1.00						
09/15/05	MM	1,451,838	1,685,198	4.1														
09/22/05	MM	1,452,662	1,686,022	0.1														
09/29/05	NM	1,466,134	1,699,494	1.3														
10/06/05	NM	1,471,344	1,704,704	0.5	W-INF		< 50.0	1.50	< 1.00	<1.00	<1.00	<2.00	< 0.025	< 1.102	< 0.0005	< 0.0302	0.0010	< 0.100
10/00/00		1,171,0	.,,		W-INT1		< 50.0	0.74	< 0.50	< 0.50	< 0.50	<0.50						
					W-INT2		< 50.0	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50						
					W-EFF		< 50.0	< 1.00	< 1.00	<1.00	<1.00	<2.00						
40/40/05	N/8.4	4 400 910	4 724 170	1.9	**-C1		. 00.0	1,00										
10/13/05	NM	1,490,810	1,724,170															
10/20/05	NM	1,499,453	1,732,813	0.9														
10/27/05	NM	1,500,130	1,733,490	0.1														
11/03/05	NM	1,500,130	1,733,490	0.0				4.40		-0.500	-0.500	44.00	- 0.040	- 4 444	< 0.0002	< 0.0304	0.0003	< 0.101
11/10/05	NM	1,500,130	1,733,490	0.0	W-INF		< 50.0	1.13	< 0.500	<0.500	<0.500	<1.00	< 0.012	< 1.114	< 0.0002	< 0.0304	0,0003	V 0.101
					W-INT1		< 50.0	0.99	< 0.50	<0.50	< 0.50	<0.50						
					W-INT2		< 50.0	< 0.50	< 0.50	<0.50	<0.50	<0.50						
					W-EFF		< 50.0	< 0.500	< 0.500	< 0.500	<0.500	<1.00						
11/17/05	NM	1,554,977	1,788,337	5.4														
11/22/05	NM	1,619,180	1,852,540	8.9														
12/01/05	NM	1,705,410	1,938,770	6.7														
12/04/05	NM	1,723,791	1,957,151	4.3														
12/08/05	NM	1,735,780	1,969,140	2.1														
				0.6	W-INF		< 50.0	< 1.00	< 1.00	<1.00	<1.00	<2.00	< 0.101	< 1.215	< 0.0015	< 0.0319	0.0022	< 0.103
12/15/05	NM	1,742,196	1,975,556	0.0			< 50.0	1.22	< 0.50	<0.50	<0.50	<0.50	0.101		0.00.0			
					W-INT1			< 0.50	< 0.50	<0.50	<0.50	<0.50						
					W-INT2		< 50.0											
					W-EFF		< 50.0	< 1.00	< 1.00	<1.00	<1.00	<2.00						
12/22/05	NM	1,759,700	1,993,060	1.7														
01/04/06	NM	1,760,247	1,993,607	0.0														
01/05/06	NM	1,769,830	2,003,190	6.7														
01/10/06	System s	hut down for f	ilter replaceme	ent.														
01/10/06	NM		2,061,872	8.2														
01/19/06			plete, restart s															
01/19/06	NM	1,828,676		0.0	W-INF		< 50	2.9	< 0.50	<0.50	< 0.50	< 0.50	< 0.036	< 1.251	< 0.0005	< 0.0325	0.0014	< 0.104
01/19/00	INIVI	1,020,010	2,002,000	0.0	W-INT1		< 50	< 2.5	< 0.50	<0.50	< 0.50	< 0.50						
					W-INT2		< 50	< 2.5	< 0.50	<0.50	<0.50	<0.50						
					W-EFF		< 50	< 0.50	< 0.50	<0.50	<0.50	<0.50						
01/26/06	NM	1,901,140	2,134,500	7.2								.0.50	. 0 400	. 4.054		. 0.0040	0.0050	< 0.400
02/03/06	NM	1,978,496	2,211,856		W-INF		110	5.6	2.9	<0.50	<0.50	<0.50	< 0.100	< 1.351	< 0.0021	< 0.0346	0.0053	< 0.109
					W-INT1		< 50	< 2.5	< 0.50	<0.50	<0.50	<0.50						
					W-INT2		< 50	< 2.5	< 0.50	<0.50	< 0.50	<0.50						
					W-EFF		< 50	< 0.50	< 0.50	<0.50	<0.50	<0.50						
02/09/06	NM	2,055,750	2,289,110	8.9														
02/16/06	NM	2,133,000	2,366,360	7.7														
02/23/06	NM	2,133,000	2,445,930	7.9														
02/23/00	IAIAI	2,212,010	£, 41 0,800	1.0														

Former Exxon Service Station 7-0277 1101 Yulupa Avenue Santa Rosa, California (Page 5 of 5)

		Totalizer	Total	Average				Laborator	y Analytical F	Results			TPHO	Removal	Benze	ne Removal	M'	TBE Removal
Date	Hours	Effluent (gal)	Volume (gal)	Flowrate	Sample ID	TPHd (µg/L)	TPHg (μg/L)	MTBE (µg/L)	B (µg/L)	Τ (μg/L)	E (µg/L)	X (µg/L)	Per Period (ibs)	Cumulative (lbs)	Per Period (lbs)	Cumulative (lbs)	Per Period (lbs)	Cumulative (lbs)
03/02/06	NM	2,292,789	2,526,149	8.0	W-INF W-INT1 W-INT2 W-EFF		160 < 50 < 50 < 50	6.0 < 2.5 < 2.5 < 0.50	4.8 < 0.50 < 0.50 < 0.50	<0.50 <0.50 <0.50 <0.50	<0.50 <0.50 <0.50 <0.50	1.3 <0.50 <0.50 <0.50	0.354	< 1.705	< 0.0101	< 0.0447	0.0152	< 0.125
03/09/06 03/16/06 03/23/06 03/30/06	MM MM MM MM	2,351,370 2,413,800 2,472,855 2,539,985	2,584,730 2,647,160 2,706,215 2,773,345	5.8 6.2 5.9 6.7														

Notes	

Ε

W-INF = Water influent from recovery wells.

W-BIO-INF = Water influent from the recovery wells and nutrient tank, before the bioreactor.

W-BIO-EFF = Water effluent from the bioreactor, before carbon vessel 1.

W-INT1 = Water intermediate between carbon vessels 1 and 2.

W-INT2 = Water intermediate between carbon vessels 2 and 3.

W-EFF = Water effluent.

TPHd = Total petroleum hydrocarbons as diesel analyzed using EPA Method 8015B modified.

TPHg = Total petroleum hydrocarbons as gasoline analyzed using EPA Method 8015B modified.

MTBE = Methyl tertiary butyl ether analyzed using EPA Method 8260B.

B = Benzene analyzed using EPA Method 8021B.

T = Toluene analyzed using EPA Method 8021B.

Ethylbenzene analyzed using EPA Method 8021B.

X = Total xylenes analyzed using EPA Method 8021B.

gal = Gallons.

gpm = Gallons per minute.

< = Less than the stated laboratory reporting limit.</p>

μg/L = Micrograms per liter.

mg/L = Milligrams per liter.

NM = Not measured.

NA = Not analyzed.

a = Analyzed using EPA Method 8260B.

b = The samples identified as W-INT1, W-INT2, and W-INT3 in the laboratory analytical reports for samples collected 11/03/03 and 12/22/03

correspond with W-BiO-EFF, W-INT1, and W-INT2, respectively, in this table.

Diesel-range organic compounds reported in sample; however, the chromatogram pattern is not representative of diesel fuel.

ATTACHMENT A CRITICAL PARAMETERS REPORT FORMS

Report: CPR2OT Page: 1

Santa Rosa Subregional Wastewater Management System Industrial Wastewater Critical Parameters Report Form Self Monitoring Report - Due April 2006.

Run Date: Time:

PERMIT.: SR-GW6590

SIC...: 1381

LAST REPORTED SAMPLING:

PERMIT EXPIRATION DATE: 23Jan2010

MAIL TO:

EXXONMOBIL OIL CORP JAMES CHAPPELL

601 N. MCDOWELL BLVD PETALUMA, CA 94954 LOCATED AT:

EXXONMOBIL OIL CORP

1101 YULUPA AVE

SANTA ROSA, CA 95405

Your critical Parameters (Self Monitoring) report is due in this office by the last day of April 2006. The parameters noted below must be tested and the form completed and returned to the SANTA ROSA SUBREGIONAL WATER RECLAMATION SYSTEM, 4300 LLANO RD, SANTA ROSA, CA 95407. For more information regarding this report see the self monitoring page of your wastewater discharge permit and/or call 707-543-3369.

IDENT CODE	PARAMETER	QUANTITY VALUES	
004	benzene	<0.00050	mg/1
038	ethylbenzene	<0.00050	mg/1
086	toluene *	<0.00050	mg/l
130	xylene	<0.00050	mg/l
245	total petroleum hydrocarbons-gas	<0.050	mg/l
246	total petroleum hydrocarbons-diesel	N/A	mg/1

Report: CPR2OT Page: 2

ENFORCEMENT ACTIONS.

Santa Rosa Subregional Wastewater Management System Industrial Wastewater Critical Parameters Report Form Self Monitoring Report - Due April 2006

Run Date: Time:

amendments thereto. Results of analyse	by the Santa Rosa Wastewater Management System. ith the standards set forth in 40 CFR 136 and s MUST be submitted to this office by the last day analysis report MUST ACCOMPANY THIS DOCUMENT.
2. All analyses must be performed by a lab Samples must be collected as specified	oratory certified by the State of California. on page 2 of your permit.
Chris Ceccarelli	1-19-06
(Print) Name of Person Collecting Sample.	Sample Date
W-EFF, W-INT2, W-INT1, W-INF	Grab
(Print) Sample Point, Location	Grab/Composite Time Start/Finish
Sequoia Analytical, 885 Jarvis Dri	ve, Morgan Hill, CA 95037
(Print) Name and Address of Laboratory Perf	orming Analysis
	1210
	Labs. State Certification Number
Exxon Mobil Corporation	. 1381
(Print) Name of Company having Wastewater I	Discharge SIC #
1101 Yulupa Anvenue, Santa Rosa, C	4
(Print) Address of Wastewater Discharge	
personnel properly gather and evaluate the the person or persons who manage the system gathering the information, the information belief, true, accurate, and complete. I among the superior of the complete o	ocument and all attachments were prepared under with a system designed to assure that qualified information submitted. Based on my inquiry of m, or those persons directly responsible for submitted is, to the best of my knowledge and m aware that there are significant penalties for e possibility of fine and imprisonment for knowing
RESPONSIBLE PERSON	04/25/04 DATE
·	·
Jennifer C. Sedlachek	Project Manager
PRINT NAME	TITLE
THIS DOCUMENT MUST BE SIGNED BY THE MOST INCLUDES THE OWNER, PRESIDENT, CORPORATE ORGANIZATION IN A DECISION MAKING CAPACITY RESPONSIBLE FOR ALL INFORMATION CONTAINED FREQUENCY ACTIONS	OFFICER, OR ANY OTHER REPRESENTATIVE OF THE

Report: CPR2OT Page: 1

Santa Rosa Subregional Wastewater Management System Industrial Wastewater Critical Parameters Report Form Self Monitoring Report - Due April 2006.

Run Date: Time:

PERMIT.: SR-GW6590

SIC...: 1381

LAST REPORTED SAMPLING:

PERMIT EXPIRATION DATE: 23Jan2010

MAIL TO:

EXXONMOBIL OIL CORP

JAMES CHAPPELL

601 N. MCDOWELL BLVD

PETALUMA, CA

94954

LOCATED AT:

EXXONMOBIL OIL CORP

1101 YULUPA AVE

SANTA ROSA, CA 95405

Your critical Parameters (Self Monitoring) report is due in this office by the last day of April 2006. The parameters noted below must be tested and the form completed and returned to the SANTA ROSA SUBREGIONAL WATER RECLAMATION SYSTEM, 4300 LLANO RD, SANTA ROSA, CA 95407. For more information regarding this report see the self monitoring page of wastewater discharge permit and/or call 707-543-3369.

CODE	PARAMETER	QUANTITY VALUES	
004	benzene	<0.00050	mg/1
038	ethylbenzene	<0.00050	mg/l
086	toluene *	<0.00050	mg/1
130	xylene	<0.00050	mg/1
245	total petroleum hydrocarbons-gas	<0.050	mg/1
246 .	total petroleum hydrocarbons-diesel	N/A	mg/l

Page: 2

ENFORCEMENT ACTIONS.

Danca Noba Dabiogrami Wastewater Management System Industrial Wastewater Critical Parameters Report Form Self Monitoring Report - Due April 2006

Kun nace: Time:

 Report all critical parameters required by the Santa Test procedures must be in accordance with the stan amendments thereto. Results of analyses MUST be sub of April , 2006. A signed laboratory analysis rep 	ndards set forth in 40 CFR 136 and
 All analyses must be performed by a laboratory cert Samples must be collected as specified on page 2 of 	rified by the State of California.
Jon Herman	2-2-06
Print) Name of Person Collecting Sample.	Sample Date
W-EFF, W-INT2, W-INT1, W-INF	Grab
Print) Sample Point, Location	Grab/Composite Time Start/Finish
Sequoia Analytical, 885 Jarvis Drive, Morgan	
Print) Name and Address of Laboratory Performing Analys	sis
	1210
	Labs. State Certification Number
Exxon Mobil Corporation	. 1381
Print) Name of Company having Wastewater Discharge	sic #
1101 Yulupa Anvenue, Santa Rosa, CA	
(Print) Address of Wastewater Discharge	
recreify under penalty of law that this document and a my direction or supervision in accordance with a system personnel properly gather and evaluate the information the person or persons who manage the system, or those gathering the information, the information submitted is belief, true, accurate, and complete. I am aware that submitting false information, including the possibility violations.	submitted. Based on my inquiry of persons directly responsible for to the best of my knowledge and
Jennifer C. Sedlachek	Project Manager
PRINT NAME	TITLE
THIS DOCUMENT MUST BE SIGNED BY THE MOST RESPONSIBLE INCLUDES THE OWNER, PRESIDENT, CORPORATE OFFICER, OF ORGANIZATION IN A DECISION MAKING CAPACITY. THE PERSON RESPONSIBLE FOR ALL INFORMATION CONTAINED HEREIN, AND INFORMEMENT ACTIONS	R ANY OTHER REPRESENTATIVE OF THE

Page: 1

Wastewater Management System Industrial Wastewater Critical Parameters Report Form Self Monitoring Report - Due April 2006.

Kun Date: Time:

PERMIT.: SR-GW6590

SIC...: 1381

LAST REPORTED SAMPLING:

PERMIT EXPIRATION DATE: 23Jan2010

MAIL TO:

EXXONMOBIL OIL CORP

JAMES CHAPPELL

601 N. MCDOWELL BLVD PETALUMA, CA 9495 LOCATED AT:

EXXONMOBIL OIL CORP

1101 YULUPA AVE

SANTA ROSA, CA 95405

Your critical Parameters (Self Monitoring) report is due in this office by the last day of April 2006. The parameters noted below must be tested and the form completed and returned to the SANTA ROSA SUBREGIONAL WATER RECLAMATION SYSTEM, 4300 LLANO RD, SANTA ROSA, CA 95407. For more information regarding this report see the self monitoring page of your wastewater discharge permit and/or call 707-543-3369.

IDENT CODE	PARAMETER	QUANTITY VALUES	
004	benzene	<0.00050	mg/l
038	ethylbenzene	<0.00050	mg/1
086	toluene *	<0.00050	mg/1
130	xylene	<0.00050	mg/1
245	total petroleum hydrocarbons-gas	<0.050	mg/1
246	total petroleum hydrocarbons-diesel	N/A	mg/1

ENFORCEMENT ACTIONS.

Kun nare: Time:

-----Wastewater Management System Industrial Wastewater Critical Parameters Report Form Self Monitoring Report - Due April 2006

1. Report all critical parameters required by the Sa Test procedures must be in accordance with the amendments thereto. Results of analyses MUST be of April , 2006. A signed laboratory analysis	standards set forth in 40 CFR 136 and
2. All analyses must be performed by a laboratory Samples must be collected as specified on page 2	certified by the State of California. of your permit.
Jon Herman	3-2-06
(Print) Name of Person Collecting Sample.	Sample Date
W-EFF, W-INT2, W-INT1, W-INF	Grab
(Print) Sample Point, Location	Grab/Composite Time Start/Finish
Sequoia Analytical, 885 Jarvis Drive, Morg	van Hill CA 95037
(Print) Name and Address of Laboratory Performing An	alysis
- • • •	1210
	Labs. State Certification Number
Exxon Mobil Corporation	. 1381
(Print) Name of Company having Wastewater Discharge	sic #
1101 Yulupa Anvenue, Santa Rosa, CA	210 #
(Print) Address of Wastewater Discharge	
I certify under penalty of law that this document army direction or supervision in accordance with a sympersonnel properly gather and evaluate the information the person or persons who manage the system, or the gathering the information, the information submitted belief, true, accurate, and complete. I am aware the submitting false information, including the possibility violations.	stem designed to assure that qualified ion submitted. Based on my inquiry of nose persons directly responsible for is, to the best of my knowledge and nat there are significant penalties for lity of fine and imprisonment for knowing
RESPONSIBLE PERSON	D4/25/06
Jennifer C. Sedlachek	. DUIT
PRINT NAME	Project Manager
EVIMI MARIC	TITLE
THIS DOCUMENT MUST BE SIGNED BY THE MOST RESPONSI INCLUDES THE OWNER, PRESIDENT, CORPORATE OFFICER, ORGANIZATION IN A DECISION MAKING CAPACITY. THE PER RESPONSIBLE FOR ALL INFORMATION CONTAINED HEREIN, A ENFORCEMENT ACTIONS	OR ANY OTHER REPRESENTATIVE OF THE

ATTACHMENT B

LABORATORY ANALYSIS REPORTS AND CHAIN-OF-CUSTODY RECORDS

30 March, 2006

James Chappell Environmental Resolutions (Exxon) 601 North McDowell Blvd. Petaluma, CA 94954

RE: Exxon 7-0277 Work Order: MPA1170

Enclosed are the results of analyses for samples received by the laboratory on 01/20/06 14:19. The samples arrived at a temperature of 5° C. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Christina Dell For Leticia Reyes Project Manager

,

CA ELAP Certificate #1210

Environmental Resolutions (Exxon) 601 North McDowell Blvd. Petaluma CA, 94954 Project: Exxon 7-0277

Project Number: 7-0277

Project Manager: James Chappell

MPA1170 Reported: 03/30/06 13:38

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
W-INF	MPA1170-01	Water	01/19/06 15:15	01/20/06 14:19
W-INT 1	MPA1170-02	Water	01/19/06 15:00	01/20/06 14:19
W-INT 2	MPA1170-03	Water	01/19/06 14:45	01/20/06 14:19
W-EFF	MPA1170-04	Water	01/19/06 14:30	01/20/06 14:19

Environmental Resolutions (Exxon) 601 North McDowell Blvd.

Petaluma CA, 94954

Project: Exxon 7-0277

Project Number: 7-0277
Project Manager: James Chappell

MPA1170 Reported: 03/30/06 13:38

W-INF (MPA1170-01) Water Sampled: 01/19/06 15:15 Received: 01/20/06 14:19

Purgeable Hydrocarbons by EPA 8015B

Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Gasoline Range Organics (C4-C12)	ND	50	ug/l	1	6A25013	01/25/06	01/25/06	EPA 8015B-VOA	
Surrogate: 4-Bromofluorobenzene		94 %	80-	120	"	"	"	#	

Purgeables by EPA Method 624 Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Unițs	Dilution	Batch	Prepared	Analyzed	Method	Note
Di-isopropyl ether	ND	0.50	ug/l	1	6B01002	02/01/06	02/01/06	EPA 624	
Ethanol	ND	100	ŧī	11	н	11	n	11	
Methyl tert-butyl ether	2.9	0.50	11	tt	H	11	u	п	
tert-Amyl methyl ether	ND	0.50	**	H	41	α	ti	н	
tert-Butyl alcohol	ND	20	н	fs	и	45	н	u	
Xylenes (total)	ND	0.50	ĸ	**	11	n n	1t	tt	
Ethyl tert-butyl ether	ND	0.50	**	II.	**	u	11	ıı	
Benzene	ND	0.50	Ħ	*1	tt	11	u	п	
Bromodichloromethane	ND	0.50	It	11	11	II	**	u	
Bromoform	ND	0.50	11	11	fi	11	п	11	
Bromomethane	ND	1.0	11	и	11	"	ŧŧ	11	
Carbon tetrachloride	ND	0.50	11	11	U	11	#	**	
Chlorobenzene	ND	0.50	"	n	ŧſ	0	tt	ff	
Chloroethane	ND	1.0	41	"	ч	If	n	11	
Chloroform	ND	0.50	er	ч	**	и	Ħ	#1	
Chloromethane	ND	0.50	11	#1	н	tt	a	TÍ.	
Dibromochloromethane	ND	0.50	ŧı	Ħ	11	11	11	Ħ	
1,2-Dichlorobenzene	ND	0.50	11	ĸ	91	ır	ır	п	
1,3-Dichlorobenzene	ND	0.50	11	11	tt	tt	11	и	
1,4-Dichlorobenzene	ND	0.50	ш	Ħ	n	11	11	**	
1,1-Dichloroethane	ND	0.50	**	u	10	ft .	п	11	
1,2-Dichloroethane	ND	0.50	Ħ	u	н	н	11	II.	
1,1-Dichloroethene	ND	0.50	н	11	н	н	н	Ħ	
trans-1,2-Dichloroethene	ND	0.50	н	11	11	11	tt	li .	
1,2-Dichloropropane	ND	0.50	91	u	н	11	"	11	
cis-1,3-Dichloropropene	ND	0.50	ft	и .	11	11	ıı	11	
trans-1,3-Dichloropropene	ND	0.50	11	11	н	n '	и	11	
Ethylbenzene	ND	0.50	11	и	н	11	u		
Methylene chloride	ND	0.50	a	"	11	s t	**	11	
1,1,2,2-Tetrachloroethane	ND	0.50	tt	п	11	н	"	11	

Sequoia Analytical - Morgan Hill

Environmental Resolutions (Exo 601 North McDowell Blvd. Petaluma CA, 94954	•	Project: Exxon 7-0277 Project Number: 7-0277 Project Manager: James Chappell									
W-INF (MPA1170-01) Water	Sampled: 01/19/06 15:15	Received	01/20/0	6 14:19							
Fetrachloroethene	ND	0.50	ug/l	1	6B01002	02/01/06	02/01/06	EPA 624			
Toluene	ND	0.50	"	н	et	11	11	#			
1,1,1-Trichloroethane	ND	0.50	11	ıt	ŧı	tı	11	п			
1,1,2-Trichloroethane	ND	0.50	н	и	P	It	н	**			
Trichloroethene	ND	0.50	"	Ħ	£t.	н	ti	tt			
Trichlorofluoromethane	ND	0.50	к	H	u	н	II.	11			
Vinyl chloride	ND	0.50	tt	n	ĸ	ıı	u	II .			
Surrogate: 1,2-Dichloroethane-d	4	105 %	50-	-150	ıı .	"	"	"			
Surrogate: 1,4-Difluorobenzene		102 %	70-	-140	и	"	u	u			
Surrogate: 4-Bromofluorobenzen	e	89 %	70-	-120	ll .	u	"	a			

Environmental Resolutions (Exxon) 601 North McDowell Blvd.

Project: Exxon 7-0277

MPA1170 Reported: 03/30/06 13:38

Petaluma CA, 94954

Project Number: 7-0277 Project Manager: James Chappell

W-INT 1 (MPA1170-02) Water Sampled: 01/19/06 15:00 Received: 01/20/06 14:19

Purgeable Hydrocarbons and BTEX by EPA 8015B/8021B Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Gasoline Range Organics (C4-C12)	ND	50	ug/l	1	6A27012	01/27/06	01/27/06	EPA 8015B/8021B	
Benzene	ND	0.50	tt.	11	11	ĸ	н	11	
Toluene	ND	0.50	11	11	H	11	"	II.	
Ethylbenzene	ND	0.50	u	11	**	10	tr.	lt.	
Xylenes (total)	ND	0.50	11	п	ri ri	n	11	it.	
Methyl tert-butyl ether	ND	2.5	и		K	11		II	
Surrogate: a,a,a-Trifluorotoluene		104 %	80	-120	"	lt	"	"	
Surrogate: 4-Bromofluorobenzene		94 %	80	-120	u	u	"	u	

Project: Exxon 7-0277

MPA1170

601 North McDowell Blvd. Petaluma CA, 94954

Project Number: 7-0277
Project Manager: James Chappell

Reported: 03/30/06 13:38

W-INT 2 (MPA1170-03) Water

Sampled: 01/19/06 14:45 Received: 01/20/06 14:19

Purgeable Hydrocarbons and BTEX by EPA 8015B/8021B

Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
Gasoline Range Organics (C4-C12)	ND	50	ug/l	1	6A27012	01/27/06	01/27/06	EPA	
Benzene	ND	0.50	u	п	u	ıı	п	8015B/8021B	
Toluene	ND	0.50	11	11	ti	ŧt	11	If	
Ethylbenzene	ND	0.50	и	н	a	"	**	и	
Xylenes (total)	ND	0.50	11	π	"	K	11	и	
Methyl tert-butyl ether	ND	2.5	10	11	n	и	н	п	
Surrogate: a,a,a-Trifluorotoluene		104 %	80	-120	"	и	"	"	
Surrogate: 4-Bromofluorobenzene		94 %	80	-120	"	"	"	"	

601 North McDowell Blvd. Petaluma CA, 94954

Project: Exxon 7-0277

Project Number: 7-0277 Project Manager: James Chappell

MPA1170 Reported: 03/30/06 13:38

W-EFF (MPA1170-04) Water Sampled: 01/19/06 14:30 Received: 01/20/06 14:19

Purgeable Hydrocarbons by EPA 8015B

Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Gasoline Range Organics (C4-C12)	ND	50	ug/l	1	6A25013	01/25/06	01/25/06	EPA 8015B-VOA	 -1
Surrogate: 4-Rromoflyorohenzene		00 %	80	120	"	"	"	"	

Purgeables by EPA Method 624 Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
Ethanol	ND	100	ug/l	1	6B01002	02/01/06	02/01/06	EPA 624	
Ethyl tert-butyl ether	ND	0.50	и	tr	п	и		11	
Methyl tert-butyl ether	ND	0.50	Ħ	11	tt.	a	п	u	
Di-isopropyl ether	ND	0.50	11	Ħ	14	н	11	u	
tert-Amyl methyl ether	ND	0.50	11	п	н	u	и	n	
tert-Butyl alcohol	ND	20	н	tt	u	и	II.	н	
Xylenes (total)	ND	0.50	11	11	u	11	n	11	
Benzene	ND	0.50	11	Ħ	11	ii	u	II	
Bromodichloromethane	ND	0.50	н	11	11	a	ti	łi .	
Bromoform	ND	0.50	#1	n	11	u	11	II .	
Bromomethane	ND	1.0	51	41	TI .	If	lt .	ıı	
Carbon tetrachloride	ND	0.50	11	ts	11	11	11	11	
Chlorobenzene	ND	0.50	11	11	н	11	ţt.	n	
Chloroethane	ND	1.0	11	et	11	11	п	11	
Chloroform	ND	0.50	91	11	u	"	к	4	
Chloromethane	ND	0.50	ŧI	**	Ħ	**	**	н	
Dibromochloromethane	ND	0.50	tı	11	11	11	н	. 11	
1,2-Dichlorobenzene	ND	0.50	11	11	**	ш	"	n	
1,3-Dichlorobenzene	ND	0.50	fr	11	11	п	11	u	
1,4-Dichlorobenzene	ND	0.50	н	11	II	ŧı	11	"	
1,1-Dichloroethane	ND	0.50	n	et	11	11	"	lf	
1,2-Dichloroethane	ND	0.50	11	11	н	ш	Ħ	u	
1,1-Dichloroethene	ND	0.50	41	. B	ıı	11	**	li	
trans-1,2-Dichloroethene	ND	0.50	tt	n	#	**	n	11	
1,2-Dichloropropane	ND	0.50	11	Ħ	44	tr	11	11	
cis-1,3-Dichloropropene	ND	0.50	tr	11	п	11	**		
trans-1,3-Dichloropropene	ND	0.50	ir	н	u	11	tr	 #I	
Ethylbenzene	ND	0.50	н	u	11	41	u	u u	
Methylene chloride	ND	0.50	11	19	н	n	"	"	
1,1,2,2-Tetrachloroethane	ND	0.50	ττ	и	11	u	11	11	

Environmental Resolutions (Exxon) 601 North McDowell Blvd. Petaluma CA, 94954		Project: Exxon 7-0277 Project Number: 7-0277 Project Manager: James Chappell									
W-EFF (MPA1170-04) Water San	npled: 01/19/06 14:30	d: 01/19/06 14:30 Received: 01/20/06 14:19									
Tetrachloroethene	ND	0.50	ug/l	1	6B01002	02/01/06	02/01/06	EPA 624			
Toluene	ND	0.50	н	tt	и	11	n	11			
1,1,1-Trichloroethane	ND	0.50	н	n	п	11	u	11			
1,1,2-Trichloroethane	ND	0.50	11	Ħ	N	u	tí	It			
Trichloroethene	ND	0.50	н	u	н	11	15	11			
Trichlorofluoromethane	ND	0.50	H	n	11	и	h	н			
Vinyl chloride	ND	0.50	lt.	"	n	11	tr.	н			
Surrogate: 1,2-Dichloroethane-d4		101 %	50	150	п	"	"	n n			
Surrogate: 1,4-Difluorobenzene		102 %	70	140	и	u	u	и			
Surrogate: 4-Bromofluorobenzene		85 %	70-	120	"	"	и	и			

Environmental Resolutions (Exxon) 601 North McDowell Blvd. Petaluma CA, 94954 Project Number: 7-0277
Project Manager: James Chappell

MPA1170 Reported: 03/30/06 13:38

Purgeable Hydrocarbons by EPA 8015B - Quality Control

Sequoia Analytical - Morgan Hill

	Evaluation			Spike Source		%REC				
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 6A25013 - EPA 5030B [P/T]										
Blank (6A25013-BLK1)				Prepared	& Analyz	ed: 01/25/	06			
Gasoline Range Organics (C4-C12)	ND	25	ug/l							
Surrogate: 4-Bromofluorobenzene	36.3		н	40.0		91	80-120			
LCS (6A25013-BS1)				Prepared	& Analyz	ed: 01/25/	06			
Gasoline Range Organics (C4-C12)	213	50	ug/I	275		77	55-130			
Surrogate: 4-Bromofluorobenzene	39.6		n .	40.0		99	80-120			
Matrix Spike (6A25013-MS1)	Sou	rce: MPA10	075-09	Prepared	& Analyz	ed: 01/25/	06			
Gasoline Range Organics (C4-C12)	214	50	ug/l	275	ND	78	55-130			
Surrogate: 4-Bromofluorobenzene	39,3		"	40.0		98	80-120			
Matrix Spike Dup (6A25013-MSD1)	Source: MPA1075-09			Prepared	& Analyz	ed: 01/25/	06			
Gasoline Range Organics (C4-C12)	226	50	ug/i	275	ND	82	55-130	5	35	•
Surrogate: 4-Bromofluorobenzene	39.6		а	40.0		99	80-120			

601 North McDowell Blvd. Petaluma CA, 94954 Project: Exxon 7-0277

Project Number: 7-0277 Project Manager: James Chappell MPA1170 Reported: 03/30/06 13:38

Purgeable Hydrocarbons and BTEX by EPA 8015B/8021B - Quality Control Sequoia Analytical - Morgan Hill

Analyte	Result	Evaluation Limit	Units	Spike Level	Source Result	%REC	%REC	200	RPD	
	Result	Dimit	OIIII	Level	Resun	76REC	Limits	RPD	Limit	Notes
Batch 6A27012 - EPA 5030B [P/T]										
Blank (6A27012-BLK1)				Prepared a	& Analyz	ed: 01/27/0	06			
Gasoline Range Organics (C4-C12)	ND	25	ug/l				· ·			
Benzene	ND	0.25	"							
l'oluene	ND	0.25	11							
Ethylbenzene	ND	0.25	11							
Xylenes (total)	ND	0.25	11							
Methyl tert-butyl ether	ND	1.25	11							
Surrogate: a,a,a-Trifluorotoluene	41.7		"	40.0		104	80-120			
Surrogate: 4-Bromofluorobenzene	36.3		"	40.0		91	80-120			
LCS (6A27012-BS1)				Prepared	& Analyz	zed: 01/27/	06			
Gasoline Range Organics (C4-C12)	218	50	ug/l	275		79	55-130			
Benzene	3.18	0.50	н	4.10		78	75-150			
Toluene	20.1	0.50	11	20.7		97	80-115			
Ethylbenzene	4.11	0.50	II.	4.85		85	75-115			
Xylenes (total)	23.3	0.50	n	23.8		98	75-115			
Surrogate: a,a,a-Trifluorotoluene	40.8		"	40.0		102	80-120			
Surrogate: 4-Bromofluorobenzene	39.2		"	40.0		98	80-120			
Matrix Spike (6A27012-MS1)	So	urce: MPA1	256-03	Prepared	& Analy:	zed: 01/27	/06			
Gasoline Range Organics (C4-C12)	183	50	ug/i	275	ND	67	55-130	•		 -
Benzene	2.90	0.50	u	4.10	ND	71	75-150			QM02
Toluene	18.7	0.50	н	20.7	ND	90	80-115			,
Ethylbenzene	3.75	0.50	a a	4.85	ND	7 7	75-115			
Xylenes (total)	21.7	0.50	u	23.8	ND	91	75-115			
Surrogate: a,a,a-Trifluorotoluene	41.1		"	40.0		103	80-120			···
Surrogate: 4-Bromofluorobenzene	39.3		"	40.0		98	80-120			
Matrix Spike Dup (6A27012-MSD1)		urce: MPA1	256-03	Prepared	l & Analy	zed: 01/27	//06			
Gasoline Range Organics (C4-C12)	173	50	ug/l	275	ND	63	55-130	6	35	-
Benzene	2.68	0.50	"	4.10	ND	65	75-150	8	25	QM0
Toluene	17.4	0.50	Ħ	20.7	ND	84	80-115	7	25	
Ethylbenzene	3.47	0.50	н	4.85	ND	72	75-115	8	25	QM0

Sequoia Analytical - Morgan Hill

601 North McDowell Blvd.

Petaluma CA, 94954

Project: Exxon 7-0277

Project Number: 7-0277

Project Manager: James Chappell

MPA1170 Reported: 03/30/06 13:38

Purgeable Hydrocarbons and BTEX by EPA 8015B/8021B - Quality Control Sequoia Analytical - Morgan Hill

Analyte	Result	Evaluation Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6A27012 - EPA 5030B [P/T]										
Matrix Spike Dup (6A27012-MSD1)	Source: MPA1256-03			Prepared	& Analyz	ed: 01/27/	06		····	
Xylenes (total)	20.2	0.50	ug/I	23.8	ND	85	75-115	7	25	
Surrogate: a,a,a-Trifluorotoluene	40.7		и	40.0		102	80-120	· · · · · · · · · · · · · · · · · · ·		
Surrogate: 4-Bromofluorobenzene	40.0		u	40.0		100	80-120			

601 North McDowell Blvd. Petaluma CA, 94954 Project: Exxon 7-0277

Project Number: 7-0277

Project Manager: James Chappell

MPA1170 Reported: 03/30/06 13:38

Purgeables by EPA Method 624 - Quality Control Sequoia Analytical - Morgan Hill

		Evaluation		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 6B01002 - EPA 5030B P/T										
Blank (6B01002-BLK1)				Prepared	& Analyz	ed: 02/01/0	06			
(ylenes (total)	ND	0.50	ug/l							
Di-isopropyl ether	ND	0.50	н							
Sthanol	ND	100	lt.							
Methyl tert-butyl ether	ND	0.50	11							
ert-Amyl methyl ether	ND	0.50	"							
ert-Butyl alcohol	ND	20	II.							
Ethyl tert-butyl ether	ND	0.50	#1							
Benzene	ND	0.25	ĸ							
Bromodichloromethane	ND	0.25	11							
Bromoform	ND	0.26	н							
Bromomethane	ND	0.5	11							
Carbon tetrachloride	ND	0.25	11							
Chlorobenzene	ND	0.25	tt							
Chloroethane	ND	0.61	șt.							
Chloroform	ND	0.25	11							
Chloromethane	ND	0.28	u							
Dibromochloromethane	ND	0.25	11							
1,2-Dichlorobenzerae	ND	0.25	eı							
1,3-Dichlorobenzene	ND	0.29	*							
1,4-Dichlorobenzene	ND	0.25	11							
1,1-Dichloroethane	ND	0.25	**							
1,2-Dichloroethane	ND	0.25	11							
1,1-Dichloroethene	ND	0.25	u							
trans-1,2-Dichloroethene	ND	0.28	п							
1,2-Dichloropropane	ND	0.25	**							
cis-1,3-Dichloropropene	ND	0.25	σ							
trans-1,3-Dichloropropene	ND	0.25	11							
Ethylbenzene	ND	0.25	II							
Methylene chloride	ND	0.25	, ,,							

Sequoia Analytical - Morgan Hill

Environmental Resolutions (Exxon) 601 North McDowell Blvd. Petaluma CA, 94954 Project: Exxon 7-0277

Project Number: 7-0277
Project Manager: James Chappell

MPA1170 Reported: 03/30/06 13:38

Purgeables by EPA Method 624 - Quality Control Sequoia Analytical - Morgan Hill

Analyte	Result	Evaluation Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
			Jiito		ZVouit	/WEX	THIRE?	VI.D	Punit	IAOfés
Batch 6B01002 - EPA 5030B P/T										
Blank (6B01002-BLK1)	. TT-			Prepared a	& Analyze	ed: 02/01/0)6			
1,1,2,2-Tetrachloroethane	ND	0.25	"							
Tetrachloroethene	ND	0.25	u							
Toluene	ND	0.25	11							
1,1,1-Trichloroethane	ND	0.25	u							
1,1,2-Trichloroethane	ND	0.25	tt							
Trichloroethene	ND	0.25	11							
Trichlorofluoromethane	ND	0.25	11							
Vinyl chloride	ND	0.25	lt							
Surrogate: 1,2-Dichloroethane-d4	5.09		"	5.00		102	50-150			
Surrogate: 1,4-Difluorobenzene	4.21		u	4.00		105	70-14 0			
Surrogate: 4-Bromofluorobenzene	4,39		"	5.00		88	70-12 0			
LCS (6B01002-BS1)				<u>-</u>	& Analyz	zed: 02/01/				
Benzene	18.9	0.50	ug/l	20.0		94	80-140			
Bromodichloromethane	19.7	0.50	ts	20.0		98	65-150			
Bromoform	20.9	0.50	11	20.0		104	60-150			
Bromomethane	21.6	1.0	н	20.0		108	15-150			
Carbon tetrachloride	19.6	0.50	н	20.0		98	65-150			
Chlorobenzene	20.1	0.50	11	20.0		100	85-135			
Chloroethane	17.4	1.0	**	20.0		87	45-150			
Chloroform	18.9	0.50	**	20.0		94	75-13 5			
Chloromethane	15.3	0.50	и	20.0		76	30-150			
Dibromochloromethane	16.7	0.50	*1	20.0		84	45-150			
1,2-Dichlorobenzene	20.1	0.50	n	20.0		100	80-130			
1,3-Dichlorobenzene	19.8	0.50	Ħ	20.0		99	85-140			
1,4-Dichlorobenzene	20.4	0.50	11	20.0		102	85-130			
1,1-Dichloroethane	15.7	0.50	"	20.0		78	35-150			
1,2-Dichloroethane	18.6	0.50	и	20.0		93	35-150			
1,1-Dichloroethene	19.6	0.50	н	20.0		98	85-135			
trans-1,2-Dichloroethene	19.4	0.50	"	20.0		97	75-150			

Sequoia Analytical - Morgan Hill

Environmental Resolutions (Exxon) 601 North McDowell Blvd.

Petaluma CA, 94954

Project: Exxon 7-0277

Project Number: 7-0277
Project Manager: James Chappell

MPA1170 Reported: 03/30/06 13:38

Purgeables by EPA Method 624 - Quality Control Sequoia Analytical - Morgan Hill

Analyte	Result	Evaluation Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD	Ni-t-
D. A. L. CDOLOGO, EDA GOGOD DE		2	<u> </u>	- Love	Result	76KEC	Littues	RPD	Limit	Notes
Batch 6B01002 - EPA 5030B P/T			····							
LCS (6B01002-BS1)	100			Prepared .	& Analyze	ed: 02/01/	06			
1,2-Dichloropropane	18.0	0.50	ug/l	20.0		90	55-150			
cis-1,3-Dichloropropene	17.4	0.50	п	20.0		87	50-150			
rans-1,3-Dichloropropene	17.0	0.50	11	20.0		85	45-150			
Sthylbenzene	20.7	0.50	11	20.0		104	80-135			
Methylene chloride	20.3	0.50	11	20.0		102	40-150			
,1,2,2-Tetrachloroethane	22.6	0.50	Ħ	20.0		113	55-150			
Tetrachl oroethene	17.8	0.50	11	20.0		89	75-150			
Coluene	16.9	0.50	11	20.0		84	80-140			
,1,1-Trichloroethame	19.1	0.50	#1	20.0		96	70-150			
1,1,2-Trichloroethane	19.4	0.50	"	20,0		97	55-150			
Frichlor oethene	17.0	0.50	11	20.0		85	30-150			
Trichlorofluoromethane	19.0	0.50	lt.	20.0		95	15-150			
Vinyl chloride	16.7	0.50	**	20.0		84	50-150			
Surrogate: 1,2-Dichloroethane-d4	5.18	•	п.	5.00		104	50-150			
Surrogate: 1,4-Difluorobenzene	4.18		"	4.00		104	70-140			
Surrogate: 4-Bromofluorobenzene	4.60		"	5.00		92	70-120			
Matrix Spike (6B01002-MS1)	·	199-01	Prepared	& Analyz	/06					
Benzene	1180	10	ug/l	200	1000	90	80-140			
Bromodichloromethane	222	10	tt	200	ND	111	65-150			
Bromoform	209	10	11	200	ND	104	60-150			
Bromomethane	245	20	n	200	6.8	119	15-150			
Carbon tetrachloride	203	10	n	200	ND	102	65-150			
Chlorobenzene	211	10	11	200	ND	106	85-135			
Chloroethane	184	20	n	200	ND	92	45-150			
Chloroform	198	10	ti	200	ND	99	75-135			
Chloromethane	171	10	и	200	ND	86	30-150			
Dibromochloromethane	170	10	e	200	ND	85	45-150			
1,2-Dichlorobenzene	202	10	fr	200	ND	101				
1,3-Dichlorobenzene	201	10	"	200	ND	101	80-130 85-140			

Sequoia Analytical - Morgan Hill

Environmental Resolutions (Exxon) 601 North McDowell Blvd.

Petaluma CA, 94954

Project: Exxon 7-0277

Project Number: 7-0277 Project Manager: James Chappell MPA1170 Reported: 03/30/06 13:38

Purgeables by EPA Method 624 - Quality Control Sequoia Analytical - Morgan Hill

Analyte	Result	Evaluation Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6B01002 - EPA 5030B P/T										· · · · · · · · · · · · · · · · · · ·
Matrix Spike (6B01002-MS1)	Sou	rce: MPA11	99-01	Prepared	& Analyz	ed: 02/01/	···			
1,4-Dichlorobenzene	206	10	ug/l	200	ND	103	85-130			
1,1-Dichloroethane	153	10	"	200	ND	76	35-150			
1,2-Dichloroethane	233	10	it	200	ND	116	35-150			
1,1-Dichloroethene	204	10	11	200	ND	102	85-135			
trans-1,2-Dichloroethene	199	10	и	200	ND	100	75-150			
1,2-Dichloropropane	190	10	Ħ	200	ND	95	55-150			
cis-1,3-Dichloropropene	166	10	н	200	ND	83	50-150			
trans-1,3-Dichloropropene	164	10	п	200	ND	82	45-150			
Ethylbenzene	471	10	tc	200	250	110	80-145			
Methylene chloride	247	10	и	200	11	118	40-150			
1,1,2,2-Tetrachloro ethane	226	10	**	200	ND	113	55-150			
Tetrachloroethene	189	10	"	200	ND	94	75-150			
Toluene	317	10	11	200	140	88	80-140			
1,1,1-Trichloroethane	200	10	и	200	ND	100				
1,1,2-Trichloroethane	207	10	11	200	ND	104	70-150			
Trichloroethene	178	10		200	ND		55-150			
Trichlorofluoromethane	195	10	**	200	ND	89	30-150			
Vinyl chloride	186	10	n	200	ND	98 93	15-150 50-150			
Surrogate: 1,2-Dichloroethane-d4	4.90	·		5.00		98	50-150	·		
Surrogate: 1,4-Difluorobenzene	4.09		a	4.00		102	70-140			
Surrogate: 4-Bromofluorobenzene	4.53		"	5.00		91	70-120			
Matrix Spike Dup (6B01002-MSD1)		urce: MPA1	199-01	Prepared	& Analyz	zed: 02/01.	/06			
Benzene	1140	10	ug/l	200	1000	70	80-140	3	10	QM0
Bromodichloromethane	199	10	**	200	ND	100	65-150	11	30	
Bromoform	203	10	"	200	ND	102	60-150	3	25	
Bromomethane	247	20	11	200	6.8	120	15-150	0.8	35	
Carbon tetrachloride	203	10	11	200	ND	102	65-150	0	20	
Chlorobenzene	205	10	п	200	ND	102	85-135	3	15	
Chloroethane	166	20	H	200	ND	83	45-150	10	45	

Sequoia Analytical - Morgan Hill

Environmental Resolutions (Exxon) 601 North McDowell Blvd. Petaluma CA, 94954 Project Exxon 7-0277
Project Number: 7-0277
Project Manager: James Chappell

MPA1170 Reported: 03/30/06 13:38

Purgeables by EPA Method 624 - Quality Control Sequoia Analytical - Morgan Hill

		Evaluation		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 6B01002 - EPA 5030B P/T										
Matrix Spike Dup (6B01002-MSD1)	Sou	rce: MPA11	199-01	Prepared	& Analyze					
Chloroform	188	10	ug/l	200	ND	94	75-135	5	15	
Chloromethane	175	10	44	200	ND	88	30-150	2	35	
Dibromochloromethane	165	10	41	200	ND	82	45-150	3	35	
,2-Dichtorobenzene	200	10	Ħ	200	ND	100	80-130	1	25	
,3-Dichlorobenzene	199	10	11	200	ND	100	85-140	1	25	
,4-Dichlorobenzene	199	10	н	200	ND	100	85-130	3	25	
1,1-Dichloroethane	158	10	it	200	ND	79	35-150	3	35	
1,2-Dichloroethane	221	10	11	200	ND	110	35-150	5	35	
1,1-Dichloroethene	200	10	Iţ	200	ND	100	85-135	2	15	
rans-1,2-Dichloroethene	193	10	n	200	ND	96	75-150	3	20	
1,2-Dichloropropane	188	10	u	200	ND	94	55-150	1	20	
cis-1,3-Dichloropropene	168	10	ıt	200	ND	84	50-150	1	35	
trans-1,3-Dichloropropene	158	10	ir.	200	ND	79	45-150	4	35	
Ethylbenzene	. 452	10	н	200	250	101	80-145	4	30	
Methylene chloride	226	10	n	200	11	108	40-150	9	30	
1,1,2,2-Tetrachloroethane	213	10	п	200	ND	106	55-150	6	35	
Tetrachloroethene	184	10	Ħ	200	ND	92	75-150	3	30	
Toluene	312	10	**	200	140	86	80-140	2	10	
1,1,1-Trichloroethane	192	10	11	200	ND	96	70-150	4	15	
1,1,2-Trichloroethane	197	10	н	200	ND	98	55-150	5	30	
Trichloroethene	175	10	47	200	ND	88	30-150	2	10	
Trichlorofluoromethane	185	10	11	200	ND	92	15-150	5	25	
Vinyl chloride	170	10	н	200	ND	85	50-150	9	35	
Surrogate: 1,2-Dichloroethane-d4	5.24		"	5.00		105	50-150			-
Surrogate: 1,4-Difluorobenzene	4.12		u	4.00		103	70-140			
Surrogate: 4-Bromofluorobenzene	4.76		u	5.00		95	70-120			

Environmental Resolutions (Exxon) 601 North McDowell Blvd.

Petaluma CA, 94954

Project: Exxon 7-0277

Project Number: 7-0277

Project Manager: James Chappell

MPA1170 Reported: 03/30/06 13:38

Notes and Definitions

QM02 The spike recovery was below control limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

CHAIN OF CUSTODY RECORD

Test/America					tions, Inc.		-				•				lache				
		Address	: 601 North	McDowell			_	Tel	epho	ne Nı	ımpe	r <u>510</u>	-547-8	196					
(615) 726-0177		City/State/Zip	: Petaluma,	CA 94954		····	_			Acco	unt#	: 102	28			_/			
Nashville Division	P	roject Manage	r James Cha	ppell							PO#	450	58856	15		_	MPX	1 //	70
2960 Foster Creighton		phone Number				·	_		F	acilit	y ID i	7-0	277			\geq			
Nashville, TN 37204	E	RI Job Number	: <u>2101-11</u>	X	, 		_		,	Globa	al ID#	<u> </u>							
ExonMobil.	_	er Name: (Print pler Signature		55 - [n	ecc.	orelli	- -						1 Yulu ta Ros					<u> </u>	
TAT P	ROVIDE:	Special Instri	uctions:	· · · · · · · · · · · · · · · · · · ·					Matri	 Х					Ana	ilyze	For:		
☐ 24 hour ☐ 72 hour ☐ 48 hour ☐ 96 hour ☐ 8 day	EDF Report	* Full Run,	, including	g BTEX,	MTBE a	nd Oxyge	nates				VOC's EPA 624*	TPHg 8015	BTEX&MTBE						
Sample ID / Descriptio	on	DATE	TIME	COMP	GRAB	PRESERV	NUMBER	Water	Soil	Vapor	Noc	TPH	8021B						
W-INF ·	01	1-19-06	1515		Х	HCL	6 Voa's	Х			Х	Х							
W-INT 1	ьe		1500		Х	HCL	6 Voa's	X				х	х						
W-INT 2	67		1448		Х	HCL	6 Voa's	х				х	х						
W-EFF *-	ery.	-	1430		x	HCL	6 Voa's	х			х	х							
										_					\perp	_			
									\dashv	\dashv			\dashv		_	+		+	
								_		\dashv		_	-		-		-	-	
	~ _											\dashv		\dashv	-	\dashv			+
											-		-	\dashv		-	+	+-	-
								+		╌┠	\dashv	-	\dashv	+	+	-	_	+	╁╌╂╸
· In I								+	_	\dashv	-	+	\dashv		\dashv	\top	_	†-	
ruished by: All Ann Varissey	Date /-2	20-06 20-06 20-06	Time 7	30 F	Received by	: Ollow TestAmerica:	uzv Jush	1-20	1/2	ime	105	2/	abora T 2_S V	atory emperample	Gom erature e Con Free (ment Upo taine	s: n Rece rs Intac	ipt: 4 1? 4.	1.7°C

SEQUOIA ANALYTICAL SAMPLE RECEIPT LOG

CLIENT NAME: REC. BY (PRINT) WORKORDER:	ERI E-Fallin M711170		- • •	DATE REC'D AT LAB: TIME REC'D AT LAB: DATE LOGGED IN:	1419		•	. · '		
CIRCLE THE APPRO	PRIATE RESPONSE	LAB SAMPLE#	DASH # ·	CLIENT ID	CONTAINER DESCRIPTION		рН	SAMPLE MATRIX	DATE SAMPLED	REMARKS: CONDITION (ETC.)
1. Custody Seal(s)	Present / Absent	-								
2. Chain-of-Custody	Present / Absent*								•	
3. Traffic Reports or Packing List:	Present / Absent						: :	·		
4. Airbill:	Airbill / Sticker Present / Absent	·				!				
5. Airbill #:										
6. Sample Labels:	Present / Absent		<u> </u>							
7. Sample IDs:	on Chain-of-Custody	•								
8. Sample Condition:	Intant / Broken* /- Leaking*					SX	-			
Does information on traffic reports and sagree?	chain-of-custody, ample labels Yes / No*				170/0	-			-	1
10. Sample received within hold time?	n Yeş / No*									
11. Adequate sample volu received?	me Yes/ No*									
12. Proper preservatives u	ised? Yes / No*									
13. Trip Blank / Temp Blar	nk Received? Yes / 🌃						·			1
(circle which, if yes) 14. Read Temp: Corrected Temp:	4.7°C					·	•.			,
is corrected temp 4+/	-2°C? (GB/ No**									1
(Acceptance range for samples in Exception (if any): META or Problem COC	equiring thermal pres.) ALS / DFF ONICE			· ·	wingsassing (N. S.					
		*IF CIRC	LED. C	ONTACT PROJECT MA	ANAGER AND	ATTACH F	RECORI	OF RES	DLUTION.	1

SRL Revision 7 leplaces Rev 5 (07/13/04) 'ective 07/19/05 Page ____of_____.

30 March, 2006

James Chappell Environmental Resolutions (Exxon) 601 North McDowell Blvd. Petaluma, CA 94954

RE: Exxon 7-0277 Work Order: MPB0185

Enclosed are the results of analyses for samples received by the laboratory on 02/03/06 15:50. The samples arrived at a temperature of 6° C. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Christina Dell For Leticia Reyes Project Manager

CA ELAP Certificate #1210

Environmental Resolutions (Exxon) 601 North McDowell Blvd. Petaluma CA, 94954 Project: Exxon 7-0277

Project Number: 7-0277

Project Manager: James Chappell

MPB0185 Reported: 03/30/06 13:41

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
W-INF	MPB0185-01	Water	02/03/06 13:30	02/03/06 15:50
W-INT 1	MPB0185-02	Water	02/02/06 13:00	02/03/06 15:50
W-INT 2	MPB0185-03	Water	02/02/06 12:30	02/03/06 15:50
W-EFF	MPB0185-04	Water	02/03/06 12:00	02/03/06 15:50

601 North McDowell Blvd. Petaluma CA, 94954

Project: Exxon 7-0277

Project Number: 7-0277 Project Manager: James Chappell

MPB0185 Reported: 03/30/06 13:41

W-INF (MPB0185-01) Water Sampled: 02/03/06 13:30 Received: 02/03/06 15:50

Purgeable Hydrocarbons by EPA 8015B

Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Gasoline Range Organics (C4-C12)	110	50	ug/l	1	6B15005	02/15/06	02/16/06	EPA 8015B-VOA	
Surrogate: 4-Bromofluorobenzene		100 %	80-	120	"	n .	· ·	"	

Purgeables by EPA Method 624 Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
Di-isopropyl ether	ND	0.50	ug/l	1	6B16024	02/16/06	02/17/06	EPA 624	
Ethanol	ND	100	tt.	u	11	11	(f	n	
Methyl tert-butyl ether	5.6	0.50	"	If	н	***	11	it	
tert-Amyl methyl ether	ND	0.50	n	11	(r	п	11	11	
tert-Butyl alcohol	ND	20	f1	11	11	tt	tt	14	
Xylenes (total)	ND	0.50	It	u	Я	11	u	11	
Ethyl tert-butyl ether	ND	0.50	Ħ	lt	"	11	If	H	
Benzene	2.9	0.50	11	#	н	11	Ħ	11	
Bromodichloromethane	ND	0.50	et	11	11	u	н	11	
Bromoform	ND	0.50	11	It	11	tt	88	"	
Bromomethane	ND	1.0	11	11	et	и	11	ti	
Carbon tetrachloride	ND	0.50	64	tt	Ħ	11	и	tt.	
Chlorobenzene	ND	0.50	11	11	**	11	ti	и	
Chloroethane	ND	1.0	17	н	Ħ	u	11	п	
Chloroform	ND	0.50	u	11	"	**	\$1	11	
Chloromethane	ND	0.50	**	tt.	H	11	tt	н	
Dibromochloromethane	ND	0.50	н	**	н	Ħ	Ħ	"	
1,2-Dichlorobenzene	ND	0.50	41	н	н	11	11	и	
1,3-Dichlorobenzene	ND	0.50	11	it	#1	Ħ	tt	11	
1,4-Dichlorobenzene	ND	0.50	"	57	11	11	11	11	
1,1-Dichloroethane	ND	0.50	11	н	11	11	11	н	
1,2-Dichloroethane	ND	0.50	и	11	**	**	tr	lt.	
1,1-Dichloroethene	ND	0.50	11	11	**	**	**	u	
trans-1,2-Dichloroethene	ND	0.50	u	**	**	tr	"	11	
1,2-Dichloropropane	ND	0.50	11	17	11	11	*1	**	
cis-1,3-Dichloropropene	ND	0.50	tt.	н	11	11	и	tt	
trans-1,3-Dichloropropene	ND	0.50	11	"	tt	**	**	"	
Ethylbenzene	ND	0.50	н	11	н	u	rt	**	
Methylene chloride	ND	0.50	n	11	н		11	u u	
1,1,2,2-Tetrachloroethane	ND	0.50	н	н	**	tt	**	и	

Sequoia Analytical - Morgan Hill

Environmental Resolutions (Exxon 601 North McDowell Blvd. Petaluma CA, 94954	•	Project Num Project Man	aber: 7					MPB0185 Reported: 03/30/06 13:41
W-INF (MPB0185-01) Water San	mpled: 02/03/06 13:30	Received:	02/03	/06 15:50				·
Tetrachloroethene	ND	0.50	ug/l	1	6B16024	02/16/06	02/17/06	EPA 624
Toluene	ND	0.50	(t	н	н	и	ff .	"
1,1,1-Trichloroethane	ND	0.50	11	и	11	ft	н	u
1,1,2-Trichloroethane	ND	0.50	It	11	и	lı	11	ır
Trichloroethene	ND	0.50	ti	tı	f 1	u	н	11
Trichlorofluoromethane	ND	0.50	п	n	H.	II	u	tt
Vinyl chloride	ND	0.50	Ħ	11	it .	ft.	u	11
Surrogate: 1,2-Dichloroethane-d4		103 %		50-150	"	п	п	ıı .
Surrogate: 1,4-Difluorobenzene		97%	;	70-140	ıı	н	u	rr .
Surrogate: 4-Bromofluorobenzene		89 %	;	70-120	и	**	а	u

601 North McDowell Blvd. Petaluma CA, 94954 Project: Exxon 7-0277

Project Number: 7-0277

Project Manager: James Chappell

MPB0185 Reported: 03/30/06 13:41

W-INT 1 (MPB0185-02) Water

Sampled: 02/02/06 13:00 Received: 02/03/06 15:50

Purgeable Hydrocarbons and BTEX by EPA 8015B/8021B Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
Gasoline Range Organics (C4-C12)	ND	50	ug/l	1	6B15038	02/15/06	02/16/06	EPA 8015B/8021B	 -
Benzene	ND	0.50	н	11	Ħ	п	11	н	
Toluene	ND	0.50	н	11	11	n	tt	11	
Ethylbenzene	ND	0.50	к	**	н	11	ti	11	
Xylenes (total)	ND	0.50	11	"	11	н	11	II.	
Methyl tert-butyl ether	ND	2.5	11	11	Jt	ti .	n	11	
Surrogate: a,a,a-Trifluorotoluene		102 %	80	-120	"	"	и	"	
Surrogate: 4-Bromofluorobenzene		101 %	80	-120	"	"	rr	"	

601 North McDowell Blvd. Petaluma CA, 94954 Project: Exxon 7-0277

Project Number: 7-0277

Project Manager: James Chappell

MPB0185 Reported: 03/30/06 13:41

W-INT 2 (MPB0185-03) Water

Sampled: 02/02/06 12:30 Received: 02/03/06 15:50

Purgeable Hydrocarbons and BTEX by EPA 8015B/8021B Sequoia Analytical - Morgan Hill

Reporting Analyte Result Limit Units Dilution Batch Prepared Analyzed Method Note Gasoline Range Organics (C4-C12) ND 50 ug/l 6B15038 02/15/06 02/16/06 **EPA** 8015B/8021B Benzene ND 0.50 Toluene ND 0.50 Ethylbenzene ND 0.50 Xylenes (total) ND 0.50 Methyl tert-butyl ether ND 2.5 ** Surrogate: a,a,a-Trifluorotoluene 102 % 80-120 " " Surrogate: 4-Bromofluorobenzene 93 % 80-120

Environmental Resolutions (Exxon) 601 North McDowell Blvd.

Petaluma CA, 94954

Project: Exxon 7-0277

Project Number: 7-0277
Project Manager: James Chappell

MPB0185 Reported: 03/30/06 13:41

W-EFF (MPB0185-04) Water Sampled: 02/03/06 12:00 Received: 02/03/06 15:50

Purgeable Hydrocarbons by EPA 8015B

Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Gasoline Range Organics (C4-C12)	ND	50	ug/l	1	6B15005	02/15/06	02/16/06	EPA 8015B-VOA	·
Surrogate: 4-Bromofluorobenzene		91%	80-	-120	"	"	"	"	

Purgeables by EPA Method 624 Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Dilution	D-4-1	.			
Ethanol					Batch	Prepared	Analyzed	Method	Not
Ethyl tert-butyl ether	ND	100	ug/l	1	6B16024	02/16/06	02/17/06	EPA 624	
•	ND	0.50	11	67	11	#1	п	11	
Methyl tert-butyl ether	ND	0.50	Ħ	11	II	If	11	11	
Di-isopropyl ether ert-Arnyl methyl ether	ND	0.50		ri .	11	u .	н	n .	
•	ND	0.50	11	11	11	u	u	н	
tert-Butyl alcohol	ND	20	11	It	II	u	ĸ	11	
Xylenes (total) Benzene	ND	0.50	11	ti	11	11	а	16	
	ND	0.50	H	11	II	н	п	u	
Bromodichloromethane	ND	0.50	lt.	(1	"	11	11	ır	
Bromoform	ND	0.50	н	11	н	u	H	11	
Bromomethane	ND	1.0	It.	н	Ħ	11	11	11	
Carbon tetrachloride	ND	0.50	11	41	11	11	11	н	
Chlorobenzene	ND	0.50	11	11	11	H	11	11	
Chloroethane	ND	1.0	Ħ	11	"	Ħ	și.	11	
Chloroform	ND	0.50	"	#	tt	11	**	er .	
Chloromethane	ND	0.50	14	**	17	11	44	ft	
Dibromochloromethane	ND	0.50	H	tt	11	11	н	n	
1,2-Dichlorobenzene	ND	0.50	11	. 11	11	11	10	tt.	
1,3-Dichlorobenzene	ND	0.50	11	**	11	11	п	**	
1,4-Dichlorobenzene	ND	0.50	"	11	п	11	п	4	
1,1-Dichloroethane	ND	0.50	51	**	11	и	er	54	
1,2-Dichloroethane	ND	0.50	п	11	11	**	11	11	
1,1-Dichloroethene	ND	0.50	11	11	11	н	n	**	
trans-1,2-Dichloroethene	ND	0.50	"	н	11	Ħ	"		
1,2-Dichloropropane	ND	0.50	н	11	**	**			
cis-1,3-Dichloropropene	ND	0.50	11	11	tr	11		11	
trans-1,3-Dichloropropene	ND	0.50	11	"	"	н	" "	11	
Ethylbenzene	ND	0.50	11	н	14	"	11		
Methylene chloride	ND	0.50	n		"	"		н	
1,1,2,2-Tetrachloroethane	ND ND	0.50	n		и	"	H (1	11	

Sequoia Analytical - Morgan Hill

Environmental Resolutions (Exx 601 North McDowell Blvd. Petaluma CA, 94954	,	Project Num Project Man	nber: 7.					MPB0185 Reported: 03/30/06 13:41		
W-EFF (MPB0185-04) Water	Sampled: 02/03/06 12:00	Received	02/03/	06 15:50						
Fetra chloroethene	ND	0.50	ug/l	1	6B16024	02/16/06	02/17/06	EPA 624		
Foluene	ND	0.50	Ħ	u	u	н	ts .	н		
1,1,1-Trichloroethane	ND	0.50	17	11	**	11	11	11		
1,1,2-Trichloroethane	ND	0.50	es	II	11	ĸ	u	u .		
Trichloroethene	ND	0.50	44	11	11	11	n	ti .		
Trichlorofluoromethane	ND	0.50	11	tt.	41	н	11	и		
Vinyl chloride	ND	0.50	n	II	"	и	u	н		
Surrogate: 1,2-Dichloroethane-d-	4	102 %	5	0-150	п	и	"	u		
Surrogate: 1,4-Difluorobenzene		96 %	7	0-140	tt	u	"	u		
Surrogate: 4-Bromofluorobenzen	e	82 %	7	0-120	"	"	"	<i>u</i>		

Project: Exxon 7-0277

Project Number: 7-0277
Project Manager: James Chappell

MPB0185 Reported: 03/30/06 13:41

Purgeable Hydrocarbons by EPA 8015B - Quality Control Sequoia Analytical - Morgan Hill

; Analyte	Result	Evaluation Limit	Units	Spike Level	Source	0/DEC	%REC	D. 70.	RPD	
2 among 107	Result	Limit	Oilles	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 6B15005 - EPA 5030B [P/T]		···								
Blank (6B15005-BLK1)				Prepared	& Analyz	ed: 02/15/	06			
Gasoline Range Organics (C4-C12)	ND	25	ug/l							
Surrogate: 4-Bromofluorobenzene	37.9	-	и	40.0	· · · · · · · · · · · · · · · · · · ·	95	80-120			
LCS (6B15005-BS1)				Prepared	& Analyz	ed: 02/15/	06			
Gasoline Range Organics (C4-C12)	. 240	50	ug/l	275		87	55-130			
Surrogate: 4-Bromofluorobenzene	39.7		n	40.0		99	80-120			
Matrix Spike (6B15005-MS1)	So	urce: MPB0(86-13	Prepared	& Analyz	ed: 02/15/	06			
Gasoline Range Organics (C4-C12)	220	50	ug/l	275	ND	80	55-130	-		~
Surrogate: 4-Bromofluorobenzene	39.7		u	40.0	<u> </u>	99	80-120			
Matrix Spike Dup (6B15005-MSD1)	So	urce: MPB0	086-13	Prepared	& Analyz	zed: 02/15/	/06			
Gasoline Range Organics (C4-C12)	213	50	ug/l	275	ND	77	55-130	3	35	
Surrogate: 4-Bromofluorobenzene	38.9	-		40.0	,	97	80-120			

601 North McDowell Blvd. Petaluma CA, 94954 Project: Exxon 7-0277

Project Number: 7-0277
Project Manager: James Chappell

MPB0185 Reported: 03/30/06 13:41

Purgeable Hydrocarbons and BTEX by EPA 8015B/8021B - Quality Control Sequoia Analytical - Morgan Hill

Analyte	Result	Evaluation Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6B15038 - EPA 5030B [P/T]										
Blank (6B15038-BLK1)				Prepared of	& Analyz	ed: 02/15/0	06			
Gasoline Range Organics (C4-C12)	ND	25	ug/l							
Benzene	ND	0.25								
Toluene	ND	0.25	ıı							
Ethylbenzene	ND	0.25	11							
Xylenes (total)	ND	0.25	**							
Methyl tett-butyl ether	ND	1.25	11							
Surrogate: a,a,a-Trifluorotoluene	81.2		"	80.0		102	80-120			
Surrogate: 4-Bromofluorobenzene	75.2		rr rr	80.0		94	80-120			
LCS (6B15038-BS1)				Prepared:	02/15/06	Analyzed	1: 02/16/06			
Gasoline Range Organics (C4-C12)	205	50	ug/l	275		75	55-130			
Benzene	4.06	0.50	11	4.10		9 9	75-150			
Toluene	20.4	0.50	**	20.7		99	80-115			
Ethylbenzene	3.97	0.50		4.85		82	75-115			
Xylenes (total)	23.0	0.50	u	23.8		97	75-115			
Surrogate: a,a,a-Trifluorotoluene	82.7		ıı	80.0		103	80-120		- ·	
Surrogate: 4-Bromofluorobenzene	76.7		"	80.0		96	80-120			
LCS (6B15038-BS2)				Prepared	: 02/15/06	Analyze	d: 02/16/06			
Gasoline Range Organics (C4-C12)	88.3	50	ug/I				55-130			
Benzene	9.4 9	0.50	Ħ	10.0		95	75-150			
Toluene	9.46	0.50	11	10.0		95	80-115			
Ethylbenzene	9.12	0.50	11	10.0		91	75-115			
Xylenes (total)	28.0	0.50	н	30.0		93	75-115			
Surrogate: a,a,a-Trifluorotoluene	82.9		'n	80.0		104	80-120			
Surrogate: 4-Bromofluorobenzene	75.7		"	80.0		95	80-120			
Matrix Spike (6B15038-MS1)	S	ource: MPB0	185-03	Prepared	1: 02/15/06	6 Analyze	d: 02/16/06)		
Gasoline Range Organics (C4-C12)	186	50	ug/l	275	ND	68	55-130		-	
Benzene	3,41	0.50	ч	4.10	ND	83	75-150			
Toluene	17.2	0.50	łı	20.7	ND	83	80-115			
Ethylbenzene	3.32	0.50	11	4.85	ND	68	75-115			QM

Sequoia Analytical - Morgan Hill

Project: Exxon 7-0277

Project Number: 7-0277

Project Manager: James Chappell

MPB0185 Reported: 03/30/06 13:41

Purgeable Hydrocarbons and BTEX by EPA 8015B/8021B - Quality Control Sequoia Analytical - Morgan Hill

Analyte	Result	Evaluation Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6B15038 - EPA 5030B [P/T]										
Matrix Spike (6B15038-MS1)	So	urce: MPB01	85-03	Prepared:	02/15/06	Analyzed	I: 02/16/06			
Xylenes (total)	19.2	0.50	ug/l	23.8	ND	81	75-115		-	
Surrogate: a,a,a-Trifluorotoluene	75.8		"	80.0		95	80-120			
Surrogate: 4-Bromofluorobenzene	76.8		u	80.0		96	80-120			
Matrix Spike Dup (6B15038-MSD1)	So	urce: MPB01	185-03	Prepared	02/15/06	Analyzed	1: 02/16/06			
Gasoline Range Organics (C4-C12)	175	50	ug/l	275	ND	64	55-130	6	35	
Benzene	3.24	0.50	11	4.10	ND	7 9	75-150	5	25	
Toluene	16.3	0.50	п	20.7	ND	79	80-115	5	25	QM02
Ethylbenzene	3.13	0.50	ıı.	4.85	ND	65	75-115	6	25	QM02
Xylenes (total)	18.3	0.50	11	23.8	ND	77	75-115	5	25	Ç. 44-
Surrogate: a,a,a-Trifluorotoluene	76.4		"	80.0		96	80-120			
Surrogate: 4-Bromofluorobenzene	76.I		"	80.0		95	80-120			

Project: Exxon 7-0277

Project Number: 7-0277
Project Manager: James Chappell

MPB0185 Reported: 03/30/06 13:41

Purgeables by EPA Method 624 - Quality Control Sequoia Analytical - Morgan Hill

Analyte	Result	Bvaluation Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6B16024 - EPA 5030B P/T										-
Blank (6B16024-BLK1)				Prepared:	02/16/06	Analyzed	l: 02/17/06			
Di-isopropyl ether	ND	0.50	ug/l			·				
Methyl tert-butyl ether	ND	0.50	n							
Ethanol	ND	100	11							
Ethyl tert-butyl ether	ND	0.50	н							
Xylenes (total)	ND	0.50	и							
tert-Butyl alcohol	ND	20	н							
tert-Amyl methyl ether	ND	0.50	u							
Benzene	ND	0.25	11							
Bromodichloromethane	ND	0.25	н							
Bromoform	ND	0.26	и							
Bromomethane	ND	0.5	п							
Carbon tetrachloride	ND	0.25	п							
Chlorobenzene	ND	0.25	11							
Chloroethane	ND	0.61	н							
Chloroform	ND	0.25	tı							
Chloromethane	ND	0.28	a							
Dibromochloromethane	ND	0.25	tt							
1,2-Dichlorobenzene	ND	0.25	16							
1,3-Dichlorobenzene	ND	0.29	11							
1,4-Dichlorobenzene	ND	0.25	Ħ							
1,1-Dichloroethane	ND	0.25	н							
1,2-Dichloroethane	ND	0.25	lf							
1,1-Dichloroethene	ND	0.25	*							
trans-1,2-Dichloroethene	ND	0.28	44							
1,2-Dichloropropane	ND	0.25	u							
cis-1,3-Dichloropropene	ND	0.25	11							
trans-1,3-Dichloropropene	ND	0,25	ш							
Ethylbenzene	ND	0.25	11							
Methylene chloride	ND	0.25	ıı							

Sequoia Analytical - Morgan Hill

Project: Exxon 7-0277
Project Number: 7-0277

MPB0185 Reported: 03/30/06 13:41

Purgeables by EPA Method 624 - Quality Control Sequoia Analytical - Morgan Hill

Project Manager: James Chappell

Analyte	Result	Evaluation Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6B16024 - EPA 5030B P/T				· · · · · · · · · · · · · · · · · · ·			·			
Blank (6B16024-BLK1)				Prepared:	02/16/06	Analyzed	: 02/17/06			
,1,2,2-Tetrachloroethane	ND	0.25	"			1 Likely 200	. 02/1//00			
Cetrachloroethene	ND	0.25	u							
Coluene	ND	0.25	н							
,1,1-Trichloroethane	ND	0.25	11							
,1,2-Trichloroethane	ND	0.25	"							
richloroethene	ND	0.25	11							
Trichloro fluoromethane	ND	0.25	11							
Vinyl chloride	ND	0.25	n n							
Surrogate: 1,2-Dichloroethane-d4	2.46		"	2.50		98	50-150			
Surrogate: 1,4-Difluorobenzene	1.99		rr .	2.00		100	70-140			
Surrogate: 4-Bromofluorobenzene	2.10		tt	2.50		84	70-120			
LCS (6B16024-BS1) Benzene	21.0	0.50			02/16/06		1: 02/17/06			
		0.50	ug/l	20.0		105	80-140			
Bromodichloromethane Bromoform	20.4	0.50	11	20.0		102	65-150			
	15.6	0.50	11	20.0		78	60-150			
Bromomethane	16.2	1.0	**	20.0		81	15-150			
Carbon tetrachloride	17.8	0.50	и	20.0		89	65-150			
Chlorobenzene	19.8	0.50	11	20.0		9 9	85-135			
Chloroethane	29.9	1.0	11	20.0		150	45-150			
Chloroform	19.9	0.50	п	20.0		100	75-135			
Chloromethane	28.1	0.50	ır	20.0		140	30-150			
Dibromochloromethane	18.9	0.50	tt	20.0		94	45-150			
1,2-Dichlorobenzene	18.2	0.50	u	20.0		91	80-130			
1,3-Dichlorobenzene	18.5	0.50	11	20.0		92	85-140			
1,4-Dichlorobenzene	17.7	0.50	11	20,0		88	85-130			
1,1-Dichloroethane	22.2	0.50	11	20.0		111	35-150			
1,2-Dichloroethane	18.4	0.50	n	20.0		92	35-150			
1,1-Dichloroethene	22.2	0.50	#1	20.0		111	85-135			
trans-1,2-Dichloroethene	21.6	0.50	**	20.0		108	75-150			

Sequoia Analytical - Morgan Hill

Project Exxon 7-0277
Project Number: 7-0277
Project Manager: James Chappell

MPB0185 Reported: 03/30/06 13:41

Purgeables by EPA Method 624 - Quality Control Sequoia Analytical - Morgan Hill

Analyte	Result	Evaluation Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6B16024 - EPA 5030B P/T										
LCS (6B16024-BS1)				Prepared:	02/16/06	Analyzed	l: 02/17/06			
1,2-Dichloropropane	22.7	0.50	ug/l	20.0		114	55-150			
cis-1,3-Dichloropropene	19.0	0.50	a	20.0		95	50-150			
trans-1,3-Dichloropropene	17.8	0.50	n	20.0		89	45-150			
Ethylbenzene	20.0	0.50	н	20.0		100	80-135			
Methylene chloride	26.5	0,50	#1	20.0		132	40-150			
1,1,2,2-Tetrachloroethane	17.0	0.50	а	20.0		85	55-150			
Tetrachloroethene	17.3	0.50	"	20.0		86	75-150			
Toluene	19.6	0.50	fi	20.0		98	80-140			
1,1,1-Trichloroethane	17.8	0.50	41	20.0		89	70-150			
1,1,2-Trichloroethane	22.4	0.50	u	20.0		112	55-150			
Trichioroethene	22.1	0.50	41	20.0		110	30-150			
Trichlorofluoromethane	18.3	0.50	It	20.0		92	15-150			
Vinyl chloride	26.4	0.50	"	20.0		132	50-150			
Surrogate: 1,2-Dichloroethane-d4	2.44		"	2.50		98	50-150			
Surrogate: 1,4-Difluorobenzene	1.96		"	2.00		98	70-140			
Surrogate: 4-Bromofluorobenzene	2.50		ĸ	2.50		100	70-120			
Matrix Spike (6B16024-MS1)	 	urce: MPB0	223-09	Prepared	: 02/16/06	6 Analyze	d: 02/17/06			
Benzene	20.9	0.50	ug/l	20.0	ND	104	80-140			
Bromodichloromethane	20.3	0.50	11	20.0	ND	102	65-150			
Bromoform	16.8	0.50	tı	20.0	ND	84	60-150			
Bromomethane	16.8	1.0	11	20.0	ND	84	15-150			
Carbon tetrachloride	17.3	0.50	11	20.0	ND	86	65-150			
Chlorobenzene	19.5	0.50	" "	20.0	ND	98	85-135			
Chloroethane	30.2	1.0	и	20.0	ND	151	45-150			Ql
Chloroform	20.2	0.50	tr	20.0	ND	101	75-135			
Chloromethane	29.4	0.50	н	20.0	ND	147	30-150			
Dibromochloromethane	19.4	0.50	n	20.0	ND	97	45-150			
1,2-Dichlorobenzene	18.7	0.50	11	20.0	ND	94	80-130			
1,3-Dichlorobenzene	18.8	0.50		20,0	ND	94	85-140			

Sequoia Analytical - Morgan Hill

Project Number: 7-0277
Project Manager: James Chappell

MPB0185 Reported: 03/30/06 13:41

Purgeables by EPA Method 624 - Quality Control Sequoia Analytical - Morgan Hill

Analyte	Result	Evaluation Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6B16024 - EPA 5030B P/T									·	
Matrix Spike (6B16024-MS1)	Sou	rce: MPB02	23-09	Prepared:	02/16/06	Analyzed	1: 02/17/06			
,4-Dichlorobenzene	18.2	0.50	ug/I	20.0	ND	91	85-130			
,1-Dichloroethane	22.1	0.50	H	20.0	ND	110	35-150			
,2-Dichloroethane	18.6	0.50	u	20.0	ND	93	35-150			
,1-Dichloroethene	22.3	0.50	Ħ	20.0	ND	112	85-135			
rans-1,2-Dichloroethene	21.8	0.50	11	20.0	ND	109	75-150			
,2-Dichloropropane	22.5	0.50	n	20.0	ND	112	55-150			
is-1,3-Dichloropropene	19.0	0.50	tt .	20.0	ND	95	50-150			
rans-1,3-Dichloropropene	17.9	0.50	II	20.0	ND	90	45-150			
Sthylbenzene	20.1	0.50	"	20.0	ND	100	80-145			
Methylene chloride	26.8	0.50	11	20.0	ND	134	40-150			
,1,2,2-Tetrachloroethane	26.2	0.50	11	20.0	ND	131	55-150			
Cetrachloroethene	16.5	0.50		20.0	ND	82	75 -1 50			
Coluene	19.3	0.50	Ħ	20.0	ND	96	80-140			
,1,1-Trichloroethane	17.5	0.50	ti	20.0	ND	88	70-150			
,1,2-Trichloroethane	22.3	0,50	n	20.0	ND	112	55-150			
Prichloroethene	17.3	0.50	ıı	20.0	ND	86	30-150			
Trichloro fluoromethane	17.2	0.50	п	20.0	ND	86	15-150			
Vinyl chloride	26.4	0.50	tt.	20.0	ND	132	50-150			
Surrogate: 1,2-Dichloroethane-d4	2.43		"	2.50		97	50-150			
Surrogate: 1,4-Difluorobenzene	1.99		u	2.00		100	70-140			
Surrogate: 4-Bromofluorobenzene	2.52		"	2.50		101	70-120			
Matrix Spike Dup (6B16024-MSD1)		urce: MPB0	223-09	Prepared	l: 02/16/06	Analyze	d: 02/17/06			
Benzene	19.9	0.50	ug/l	20.0	ND	100	80-140	5	10	
Bromodichloromethane	19.6	0.50	н	20.0	ND	98	65-150	4	30	
Bromoform	16.4	0.50	11	20.0	ND	82	60-150	2	25	
Bromornethane	22.9	1.0	ŧŧ	20.0	ND	114	15-150	31	35	
Carbon tetrachloride	15.6	0.50	II	20.0	ND	78	65-150	10	20	
Chlorobenzene	18.9	0.50	11	20.0	ND	94	85-135	3	15	
Chloroethane	27.2	1.0	Įτ	20.0	ND	136	45-150	10	45	

Sequoia Analytical - Morgan Hill

Project Exxon 7-0277
Project Number: 7-0277
Project Manager: James Chappell

MPB0185 Reported: 03/30/06 13:41

Purgeables by EPA Method 624 - Quality Control Sequoia Analytical - Morgan Hill

Analyte	Result	Evaluation Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6B16024 - EPA 5030B P/T									· · · · · · · · · · · · · · · · · · ·	
Matrix Spike Dup (6B16024-MSD1)	Sei	ırce: MPB02	23-09	Prepared:	02/16/06	Analyzed	1: 02/17/06			
Chloroform	19.0	0.50	ug/l	20.0	ND	95	75-135	6	15	
Chloromethane	2 7.2	0.50	n	20.0	ND	136	30-150	8	35	
Dibromochloromethane	18.7	0.50	tr	20.0	ND	94	45-150	4	35	
,2-Dichlorobenzene	18.9	0.50	It	20.0	ND	94	80-130	1	25	
,3-Dichlorobenzene	18.7	0.50	11	20.0	ND	94	85-140	0.5	25	
,4-Dichlorobenzene	18.2	0.50	Įt.	20.0	ND	91	85-130	0	25	
,1-Dichloroethane	20,6	0.50	**	20.0	ND	103	35-150	7	35	
,2-Dichloroethane	17.7	0.50	u	20.0	ND	88	35-150	5	35	
,1-Dichloroethene	20.0	0.50	и	20.0	ND	100	85-135	11	15	
rans-1,2-Dichloroethene	20.6	0.50	er	20.0	ND	103	75-150	6	20	
,2-Dichloropropane	21.4	0.50	11	20.0	ND	107	55-150	5	20	
is-1,3-Dichloropropene	18.2	0.50	ŧſ	20.0	ND	91	50-150	4	35	
rans-1,3-Dichloropropene	17.4	0.50	"	20.0	ND	87	45-150	3	35	
Ethylbenzene	18.7	0.50	Ħ	20.0	ND	94	80-145	7	30	
Methylene chloride	26.0	0.50	н	20,0	ND	130	40-150	3	30	
1,1,2,2-Tetrachloroethane	26.5	0.50	e	20.0	ND	132	55-150	1	35	
Tetrachloroethene	15.5	0.50	**	20.0	ND	7 8	75-150	6	30	
Toluene	18.4	0.50	**	20.0	ND	92	80-140	5	10	
,1,1-Trichloroethane	15.9	0.50	и	20.0	ND	80	70-150	10	15	
1,1,2-Trichloroethane	21.7	0.50	11	20.0	ND	108	55-150	3	30	
Prichloroe thene	16.2	0.50	**	20,0	ND	81	30-150	7	10	
Trichlorofluoromethane	16.0	0.50	rr	20.0	ND	80	15-150	7	25	
Vinyl chloride	24.1	0,50	п	20.0	ND	120	50-150	9	35	
Surrogate: 1,2-Dichloroethane-d4	2.40		"	2.50	·· <u> </u>	96	50-150			
Surrogate: 1,4-Difluorobenzene	2.00		"	2.00		100	70-140			
Surrogate: 4-Bromoflwrobenzene	2.53		"	2.50		101	70-120			

601 North McDowell Blvd.

Petaluma CA, 94954

Project: Exxon 7-0277

Project Number: 7-0277

Project Manager: James Chappell

MPB0185 Reported: 03/30/06 13:41

Notes and Definitions

QM02 The spike recovery was below control limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.

QM01 The spike recovery was above control limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

- A	•		. Environme	rial Dassie	Hope Inc		, , , , , , , , , , , , , , , , , , , 				******	<u>85</u>		الموا					
Test/Amer	ica "	onsultant Name	: 601 North		uons, mc.	· · · · · · · · · · · · · · · · · · ·						r <u>540</u> r 510-			achek				
14608	PORATED	City/State/Zip				 -	-	16						30					
(615) 726-0177	•	-					Account #: 10228												
Nashville Division			ect Manager James Chappell							PO #: 4505885615 Facility ID # 7-0277									
2960 Foster Creighton		-	one Number: 1-707-766-2000										(11						
Nashville, TN 37204			Job Number: 2101-11X							Globa									
ExonMobil	_	er Name: (Print		erm	<u>am</u>		_					1101							
,	Sam	ipler Signature:	r Signature:							, Stat	e Zip	Sant	Ros	a, Cal	lifornia			·	
TAT	PROVIDE:	Special Instru	ctions:	·· ····· ·····			· · · · · · · · · · · · · · · · · · ·		Matri	x					Analy	ze For	r:		
☐ 24 hour ☐ 72 hour	EDF Report	* Full Run,	Including	BTEX,	MTBE at	nd Oxygei	nates				,4*		띪			T		T	T
											A 624*]					
☑8 day											EPA	TPHg 8015	BTEX8MTBE				ł		
				<u> </u>	I]	Water	Soil	Vapor	VOC's	报	8021B						İ
Sample ID / Do		DATE	TIME	COMP	GRAB	PRESERV	NUMBER	😤	S	Ş	<u>></u>	片	8	_				—	<u> </u>
W-INI	: ol	2/2/06	1330		X	HCL	6 Voa's	X			Х	Х	\bot						<u> </u>
W-INT	1 02		1300		X	HCL	6 Voa's	X				Х	x i		\bot				_
W-INT	2 03		1230		Х	HCL	6 Voa's	x				x	x	\perp		\perp			
W-EFI	: 04		1200		Х	HCL	6 Voa's	Х			х	x							
										_				\perp			1_		
·										_	_	_	\perp	\perp		1_	 		
						·					_		\bot				<u> </u>		
										_	4	.		\perp	\bot		_		
								_			\dashv				\perp	_	1		
- <u></u>									\perp		\perp	_	\perp	\perp		\perp			\perp
·																			
					T	T	T	T	\top	T		T			T				

| Relinquished by: | | DAW 21 | Date 2-3-06 | Time | 200 | Received by TestAmerica: | Section | 1500 | | Fall | 1500 | |

Temperature Upon Receipt: 5.5 - 4 Sample Containers Intact? 40

VOAs Free of Headspace? Yel

SECUCIA ANALYTICAL SAMPLE RECEIPT LOG

CLIENT NAME: _ REC. BY (PRINT) _ . WORKORDER: _	E. Fallin MPB0185		•	DATE REC'D AT LAB: TIME REC'D AT LAB: DATE LOGGED IN:		550			POR HEGUIA DRINKING WASTE WA	ATER YES/NO
CIRCLE THE APPRO	PRIATE RESPONSE	LAB	DASH	CLIENT ID	CONTAINER DESCRIPTION	PRESERV ATIVE	рН	SAMPLE MATRIX	DATE SAMPLED	REMARKS: CONDITION (ETC.)
		SAMPLE#	# .		DEGGEN HOLL					and the second second
1. Custody Seal(s)	Present / Ausent Intact / Broken*									
2. Chain-of-Custody	Présent / Absent*				•	· ·				
3. Traffic Reports or	1 (COSILET / LOCALITY						<u>.</u>			
Packing List:	Present / Absent							· · · · · · · · · · · · · · · · · · ·		
4. Airbili:	Airbill / Sticker	·	·			!				
4. 7 11 2012	Present / Atbsent			<u> </u>						
5. Airbill #:			ļ				(0)	·		
6. Sample Labels:	Present / Absent					. 6.		•		
7. Sample IDs:	Listed / Not Listed ·					20%				
	on Chain-of-Custody				/	-				
8. Sample Condition:	Intagt / Broken* / Leaking*			•	100					
9. Does information on				•	13/	-				
traffic reports and sa	ample labels				3/					<u> </u>
agree?	(Yes / No*				/					· · · · · · · · · · · · · · · · · · ·
10. Sample received within	n			S Y						
hold time?	· (Yes)/No*			7						
11. Adequate sample volui	me (.)	<u>.</u>		. /		:-				
received?	Yes/No*									
12. Proper preservatives u	sed? (es/No*				-					-
13. Trip Blank / Temp Blan	Yes / No*			1						
(circle which, if yes)	5.9.0			·						· · · · · · · · · · · · · · · · · · ·
14. Read Temp: Corrected Temp:	5.5°C									
Is corrected temp 4 +/-										
(Acceptance range for samples re		. /:								
**Exception (if any): META	ALS / DFF ON ICE									
or Problem COC	•					Vacantaria Assistan	COUNTY RANGE	New York and Day of the	THE STATE OF THE S	
			I ED C	ONTACT PROJECT M	ANAGER AND	ATTACH R	ECORI	OF RES	OLUTION.	T. T. T.

SRL Revision 7
Replaces Rev 5 (07/13/04)
~Effective 07/19/05

Page of .

24 March, 2006

James Chappell Environmental Resolutions (Exxon) 601 North McDowell Blvd. Petaluma, CA 94954

RE: Exxon 7-0277 Work Order: MPC0234

Enclosed are the results of analyses for samples received by the laboratory on 03/06/06 17:20. The samples arrived at a temperature of 3° C. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Christina Dell For Leticia Reyes

Project Manager

CA ELAP Certificate #1210

Environmental Resolutions (Exxon) 601 North McDowell Blvd.

Project: Exxon 7-0277

MPC0234 Reported: 03/24/06 13:22

Petaluma CA, 94954

Project Number: 7-0277
Project Manager: James Chappell

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
W-INF	MPC0234-01	Water	03/02/06 16:30	03/06/06 17:20
W-INT I	MPC0234-02	Water	03/02/06 16:00	03/06/06 17:20
W-INT 2	MPC0234-03	Water	03/02/06 15:30	03/06/06 17:20
W-EFF	MPC0234-04	Water	03/02/06 15:00	03/06/06 17:20

^{*}Note: This report is 3 days late past the standard turn around time of 10 days.

Project: Exxon 7-0277

Project Number: 7-0277 Project Manager: James Chappell

MPC0234 Reported: 03/24/06 13:22

Petaluma CA, 94954

W-INF (MPC0234-01) Water Sampled: 03/02/06 16:30 Received: 03/06/06 17:20

Purgeable Hydrocarbons by EPA 8015B

Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Gasoline Range Organics (C4-C12)	160	50	ug/l	1	6C14049	03/14/06	03/14/06	EPA 8015B-VOA	
Surrogate: 4- Bromoflyorohenzene		112%	80.	120	"	"	"	"	

Purgeables by EPA Method 624

Sequoia Analytical - Morgan Hill

l. ,		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
Di-isopropyl ether	ND	0.50	ug/l	1	6C15007	03/15/06	03/16/06	EPA 624	
Ethanol	ND	100	11	"	11	и	и	11	
Methyl tert-butyl ether	6.0	0.50	o o	и	u	n	11	п	
tert-Amyl methyl ether	ND	0.50	н	11	**	**	**	u	
tert-Butyl alcohol	ND	20	19	II .	n	17	н	11	
Xylenes (total)	1.3	0.50	н	n	11	ti	II .	It	
Ethyl tert-butyl ether	ND	0.50	**	Ħ	**	#	п	n	
Benzene	4.8	0.50	"	II	11	ıt	11	11	
Bromodichloromethane	ND	0.50	n	tt	(1	11	17	rr .	
Bromoform	ND	0.50	If	**	11	н	11	tr	
Bromomethane	ND	1.0	17		11	11	Ħ	Ħ	
Carbon tetrachloride	ND	0.50	f1	n	rt .	H	U	n	
Chlorobenzene	ND	0.50	11	**	**	11	n	и	
Chloroethane	ND	1.0	(1	н	ft	11	11	**	
Chloroform	ND	0.50	**	(r	**	**	**	11	
Chloromethane	ND	0.50	If	"	**	11	п	и	
Dibromochloromethane	ND	0.50	Ħ	н	11	Ħ	11	II .	
1,2-Dichlorobenzene	ND	0.50	11	11	**	ţi	11	11	
1,3-Dichlorobenzene	ND	0.50	n	19	11	11	11	ıı	
1,4-Dichlorobenzene	ND	0.50	11	**	**	n	**	**	
1,1-Dichloroethane	ND	0.50	11	11	11	lf .	u	н	
1,2-Dichloroethane	ND	0.50	11	**	et	н	"	u	
1,1-Dichloroethene	ND	0.50	11	н	11	11		**	
trans-1,2-Dichloroethene	ND	0.50	*11	11	n	"	a	n	
1,2-Dichloropropane	ND	0.50	и		11	11	#	н	
cis-1,3-Dichloropropene	ND	0.50	*1	u u	Ħ	п	11	"	
trans-1,3-Dichloropropene	ND	0.50	11	11	"	H	11	н	
Ethylbenzene	ND	0.50	**	11	и	11	ıı	11	
Methylene chloride	ND	0.50	н	11	**	u	ıı	11	
1,1,2,2-Tetrachloroethane	ND	0.50	*1	**	ti	11	**	u	

Sequoia Analytical - Morgan Hill

Environmental Resolutions (Exxon) 601 North McDowell Blvd. Petaluma CA, 94954		Project: Exxon 7-0277 Project Number: 7-0277 Project Manager: James Chappell								
W-INF (MPC0234-01) Water Sai	npled: 03/02/06 16:30	Received:	03/06/0	6 17:20						
Tetrachloroethene	ND	0.50	ug/l	1	6C15007	03/15/06	03/16/06	EPA 624		
Toluene	ND	0.50	11	ti	11	11	11	н		
1,1,1-Trichloroethane	ND	0.50	ш	11	11	н	If .	u		
1,1,2-Trichloroethane	ND	0.50	**	If	l1	11	"	n		
Trichloroethene	ND	0.50	U	u	n	н	*1	It		
Trichlorofluoromethane	ND	0.50	n	**	н	H	"	11		
Vinyl chloride	ND	0.50	11	11	U	U	**	11		
Surrogate: 1,2-Dichloroethane-d4		125 %	50-	150	"	"	"	n .		
Surrogate: 1,4-Difluorobenzene		106 %	70-	140	"	u	"	n .		
Surrogate: 4-Bromofluorobenzene		92 %	70-	120	"	"	"	и		

Project: Exxon 7-0277

601 North McDowell Blvd. Petaluma CA, 94954 Project Number: 7-0277
Project Manager: James Chappell

MPC0234 Reported: 03/24/06 13:22

W-INT 1 (MPC0234-02) Water

Sampled: 03/02/06 16:00 Received: 03/06/06 17:20

Purgeable Hydrocarbons and BTEX by EPA 8015B/8021B Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
Gasoline Range Organics (C4-C12)	ND	50	ug/l	1	6C14049	03/14/06	03/14/06	EPA 8015B/8021B	
Benzene	ND	0.50	11	**	11	11	и	tr	
Toluene	ND	0.50	н	n	11	H	и	n .	
Ethylbenzene	ND	0.50	H	11	11	u	11	11	
Xylenes (total)	ND	0.50	11	n	n	11	u	11	
Methyl tert-butyl ether	ND	2.5	II		#1	н	11	u	
Surrogate: a,a,a-Trifluorotoluene		104 %	80-	-120	"	"	"	и	
Surrogate: 4-Bromofluorobenzene		95 %	80-	-120	"	"	n.	n	

Environmental Resolutions (Exxon) 601 North McDowell Blvd.

Project: Exxon 7-0277
Project Number: 7-0277

MPC0234 Reported: 03/24/06 13:22

W-INT 2 (MPC0234-03) Water

Petaluma CA, 94954

Sampled: 03/02/06 15:30 Received: 03/06/06 17:20

Purgeable Hydrocarbons and BTEX by EPA 8015B/8021B

Project Manager: James Chappell

Sequoia Analytical - Morgan Hill

Analyte	D 14	Reporting	** **	5 9.00					
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
Gasoline Range Organics (C4-C12)	ND	50	ug/I	1	6C14049	03/14/06	03/14/06	EPA 8015B/8021B	
Benzene	ND	0.50	u	n	"	u	II	11	
Toluene	ND	0.50	н	11	Ħ	"	tt.	н	
Ethylbenzene	ND	0.50	#1	**	11	II	11	и	
Xylenes (total)	ND	0.50	11	#	11	†I	#1	11	
Methyl tert-butyl ether	ND	2.5	19	"	ıı	u	**	H	
Surrogate: a,a,a-Trifluorotoluene		103 %	80-	120	"	и	"	"	
Surrogate: 4-Bromofluorobenzene		95 %	80-	120	n	#	"	"	

601 North McDowell Blvd. Petaluma CA, 94954 Project: Exxon 7-0277

Project Number: 7-0277
Project Manager: James Chappell

MPC0234 Reported: 03/24/06 13:22

W-EFF (MPC0234-04) Water

Sampled: 03/02/06 15:00 Received: 03/06/06 17:20

Purgeable Hydrocarbons by EPA 8015B Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Gasoline Range Organics (C4-C12)	ND	50	ug/l	1	6C14049	03/14/06	03/14/06	EPA	
Surrogate: 4-Bromofluorobenzene		95 %	80-	-120			"	8015B-VOA	

Purgeables by EPA Method 624 Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
Ethanol	ND	100	ug/l	1	6C15007	03/15/06	03/16/06	EPA 624	
Ethyl tert-butyl ether	ND	0.50	н	fi fi	11	п	п	11	
Methyl tert-butyl ether	ND	0.50	Ħ	н	ŧı	u	91	IT	
Di-isopropyl ether	ND	0.50	11	11	н	11	It	II.	
tert-Amyl methyl ether	ND	0.50	я	tr	н	11	11	R	
tert-Butyl alcohol	ND	20	Ir	n	ff	11	IT	11	
Xylenes (total)	ND	0.50	н	Ħ		11	11	n	
Benzene	ND	0.50	11	н	"	11	n	#1	
Bromodichloromethane	ND	0.50	#1	n	**	11		"	
Bromoform	ND	0.50	If	u	n	tr	"	н	
Bromomethane	ND	1.0	#	ft	п	11	tt .	U	
Carbon tetrachloride	ND	0.50	**	11	tr.	II .	0	(1	
Chlorobenzene	ND	0.50	11	11	**	u	**	11	
Chloroethane	ND	1,0	11	н	st	#	#	11	
Chloroform	ND	0.50	19	u	n	11	H	lf .	
Chloromethane	ND	0.50	(1	tt.	n	H	v	u	
Dibromochloromethane	ND	0.50	#	lr .	н	н	11	"	
1,2-Dichlorobenzene	ND	0.50	Ħ	11	#1	n	п	n	
1,3-Dichlorobenzene	ND	0.50	11	II.	11	11	п	н	
1,4-Dichlorobenzene	ND	0.50	H	11	11	It.	ır	II	
1,1-Dichloroethane	ND	0.50	#	11	**	11	11	ti	
1,2-Dichloroethane	ND	0.50	11	ti	41	11	11	11	
1,1-Dichloroethene	ND	0.50	n	71	н	11	19		
trans-1,2-Dichloroethene	ND	0.50	11	11	**	н	11	II.	
1,2-Dichloropropane	ND	0.50	"	11	11	**	41	lt .	
cis-1,3-Dichloropropene	ND	0.50	11	"	11	11	H	Ħ	
trans-1,3-Dichloropropene	ND	0.50	**	#	11	17	#1	**	
Ethylbenzene	ND	0.50	If	и	**	tt	If	н	
Methylene chloride	ND	0.50	ш	#	н	н	11	11	
1,1,2,2-Tetrachloroethane	ND	0.50	#1	19		If	11		

Environmental Resolutions (Exxor 601 North McDowell Blvd. Petaluma CA, 94954	•	Project: Exxon 7-0277 Project Number: 7-0277 Project Manager: James Chappell							
W-EFF (MPC0234-04) Water Sa	ampled: 03/02/06 15:00	Received	: 03/06/0	6 17:20					
Tetrachloroethene	ND	0.50	ug/l	1	6C15007	03/15/06	03/16/06	EPA 624	
Foluene	ND	0.50	II	**	**	tt.	If	#	
1,1,1-Trichloroethane	ND	0.50	H	**	tt	u	If .	#	
1,1,2-Trichloroethane	ND	0.50	H	**	ıı	a	и	"	
Frichloroethene	ND	0.50	11	11	11	ŧı	u	п	
Trichlorofluoromethane	ND	0.50	0	**	ll .	u	**	п	
Vinyl chloride	ND	0.50	u	11	**	ıţ	н	11	
Surrogate: 1,2-Dichloroethane-d4		118 %	50-	150	"	ıı .	п	"	
Surrogate: 1,4-Difluorobenzene		104 %	70-	140	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		72 %	70-	120	н	"	"	u	

Project: Exxon 7-0277

Project Number: 7-0277
Project Manager: James Chappell

MPC0234 Reported: 03/24/06 13:22

Purgeable Hydrocarbons by EPA 8015B - Quality Control Sequoia Analytical - Morgan Hill

		Evaluation		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 6C14049 - EPA 5030B [P/T]										
Blank (6C14049-BLK1)				Prepared	& Analyz	ed: 03/14/	06			
Gasoline Range Organics (C4-C12)	ND	25	ug/l							
Surrogate: 4-Bromofluorobenzene	37.6		"	40.0		94	80-120			
LCS (6C14049-BS1)				Prepared	& Analyz	ed: 03/14/	06			
Gasoline Range Organics (C4-C12)	235	50	ug/I	275		85	55-130			
Surrogate: 4-Bromofluorobenzene	40.1	•	и	40.0		100	80-120		-,.	
Matrix Spike (6C14049-MS1)	Sou	ırce: MPC02	234-04	Prepared	& Analyz	ed: 03/14/	06			
Gasoline Range Organics (C4-C12)	224	50	ug/l	275	ND	81	55-130			
Surrogate: 4-Bromofluorobenzene	40.3		"	40.0		101	80-120			
Matrix Spike Dup (6C14049-MSD1)	Son	arce: MPC02	234-04	Prepared	& Analyz	ed: 03/14/	06			
Gasoline Range Organics (C4-C12)	215	50	ug/l	275	ND	78	55-130	4	35	
Surrogate: 4-Bromofluorobenzene	40.1		"	40.0		100	80-120			

601 North McDowell Blvd. Petaluma CA, 94954 Project: Exxon 7-0277

Project Number: 7-0277
Project Manager: James Chappell

MPC0234 Reported: 03/24/06 13:22

Purgeable Hydrocarbons and BTEX by EPA 8015B/8021B - Quality Control Sequoia Analytical - Morgan Hill

Analyte	Result	Evaluation Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6C14049 - EPA 5030B [P/T]										
Blank (6C14049-BLK1)				Prepared	& Analyze	ed: 03/14/	06			
Gasoline Range Organics (C4-C12)	ND	25	ug/l				···			
Benzene	ND	0.25	"							
Toluene	ND	0.25	#1							
Ethylbenzene	ND	0.25	"							
Xylenes (total)	ND	0.25	11							
Methyl tert-butyl ether	ND	1.25	"							
Surrogate: a,a,a-Trifluorotoluene	41.3		"	40.0		103	80-120		 -	
Surrogate: 4-Bromofluorobenzene	37.6		"	40.0		94	80-120			
LCS (6C14049-BS1)		w-ve		Prepared	& Analyze	ed: 03/14/	06			
Gasoline Range Organics (C4-C12)	235	50	ug/l	275		85	55-130			
Benzene	3.36	0.50	II	2.65		127	75-150			
Toluene	20.9	0.50	**	23.0		91	80-115			
Ethylbenzene	4.05	0.50	11	4.60		88	75-115			
Xylenes (total)	22.9	0.50	*1	26.4		87	75-115			
Surrogate: a,a,a-Trifluorotoluene	40.0		"	40.0		100	80-120			
Surrogate: 4-Bromofluorobenzene	40.1		"	40.0		100	80-120			
Matrix Spike (6C14049-MS1)	So	urce: MPC0	234-04	Prepared	& Analyz	ed: 03/14/	06			
Gasoline Range Organics (C4-C12)	224	50	ug/l	275	ND	81	55-130			
Benzene	3.20	0.50	"	2.65	ND	121	75-150			
Toluene	19.9	0.50	н	23.0	ND	87	80-115			
Ethylbenzene	3.79	0.50	**	4.60	ND	82	75-115			
Xylenes (total)	21.9	0.50	11	26.4	ND	83	75-115			
Surrogate: a,a,a-Trifluorotoluene	40.4		#	40.0		101	80-120			
Surrogate: 4-Bromofluorobenzene	40.3		"	40.0		101	80-120			
Matrix Spike Dup (6C14049-MSD1)		ource: MPC0	234-04	Prepared	& Analyz	ed: 03/14/	/06			
Gasoline Range Organics (C4-C12)	215	50	ug/l	275	ND	78	55-130	4	35	-
Benzene	3.35	0.50	**	2.65	ND	126	75-150	5	25	
Toluene	19.2	0.50	**	23.0	ND	83	80-115	4	25	
Ethylbenzene	3.67	0.50	lf .	4.60	ND	80	75-115	3	25	

Sequoia Analytical - Morgan Hill

Environmental Resolutions (Exxon) 601 North McDowell Blvd.

Petaluma CA, 94954

Project: Exxon 7-0277

Project Number: 7-0277 Project Manager: James Chappell MPC0234 Reported: 03/24/06 13:22

Purgeable Hydrocarbons and BTEX by EPA 8015B/8021B - Quality Control Sequoia Analytical - Morgan Hill

Analyte	Result	Evaluation Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
T										

Batch 6C14049 - EPA 5030B [P/T]

Matrix Spike Dup (6C14049-MSD1)	Sour	ce: MPC02	34-04	Prepared a	& Analyze	ed: 03/14	/06			
Xylenes (total)	21.1	0.50	ug/l	26.4	ND	80	75-115	4	25	
Surrogate: a,a,a-Trifluorotoluene	39.9		II	40.0		100	80-120			
Surrogate: 4-Bromofluorobenzene	40.1		n	40.0		100	80-120			

Project Number: 7-0277
Project Manager: James Chappell

MPC0234 Reported: 03/24/06 13:22

Purgeables by EPA Method 624 - Quality Control Sequoia Analytical - Morgan Hill

Analyte	Result	Evaluation Limit	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Notes
Batch 6C15007 - EPA 5030B P/T										
Blank (6C15007-BLK1)				Prepared	& Analyz	ed: 03/15/	06			
tert-Butyl alcohol	ND	10	ug/l							
Methyl tert-butyl ether	ND	0.25	lf							
Ethanol	ND	50	11							
Di-isopropyl ether	ND	0.25	11							
tert-Amyl methyl ether	ND	0.25	11							
Xylenes (total)	ND	0.47	11							
Ethyl tert-butyl ether	ND	0.25	11							
Benzene	ND	0.25	Ħ							
Bromodichloromethane	ND	0.25	n							
Bromoform	ND	0.26	Ħ							
Bromomethane	ND	0.5	řt.							
Carbon tetrachloride	ND	0.25	н							
Chlorobenzene	ND	0.25	"							
Chloroethane	ND	0.61	и							
Chloroform	ND	0.25	п							
Chloromethane	ND	0.28	"							
Dibromochloromethane	ND	0.25	"							
1,2-Dichlorobenzene	ND	0.25	tt							
1,3-Dichlorobenzene	ND	0.29	11							
1,4-Dichlorobenzene	ND	0.25	**							
1,1-Dichloroethane	ND	0.25	17							
1,2-Dichloroethane	ND	0.25	и							
1,1-Dichloroethene	ND	0.25	"							
trans-1,2-Dichloroethene	ND	0.28	11							
1,2-Dichloropropane	ND	0.25	11							
cis-1,3-Dichloropropene	ND	0.25	11							
trans-1,3-Dichloropropene	ND	0.25	11							
Ethylbenzene	ND	0.25	ш							
Methylene chloride	0.48	0.25	11							

Sequoia Analytical - Morgan Hill

Environmental Resolutions (Exxon) 601 North McDowell Blvd.

Petaluma CA, 94954

Project Number: 7-0277
Project Manager: James Chappell

MPC0234 Reported: 03/24/06 13:22

Purgeables by EPA Method 624 - Quality Control Sequoia Analytical - Morgan Hill

Analyte	Result	Evaluation Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6C15007 - EPA 5030B P/T						74140	Zimito	MD	Lilli	Notes
Blank (6C15007-BLK1)	· · · · · · · · · · · · · · · · · · ·			Prepared	& Analysis	d. 02/15/				···
1,1,2,2-Tetrachloroethane	ND	0.25	If	1 tehaten	x Amary26	u. 03/13/0				
Tetrachloroethene	ND	0.25	11							
Toluene	ND	0.25	**							
1,1,1-Trichloroethane	ND	0.25	11							
1,1,2-Trichloroethane	ND	0.25	н							
Trichloroethene	ND	0.25	0							
Trichlorofluoromethane	ND	0,25	**							
Vinyl chloride	ND	0.25	**							
Surrogate: 1,2-Dichloroethane-d4	2.91		"	2.50		116	50-150			
Surrogate: 1,4-Difluorobenzene	2.18		n	2.00		109	70-140			
Surrogate: 4-Bromofluorobenzene	2.01		"	2.50		80	70-120			
LCS (6C15007-BS1)					& Analyze	ed: 03/15/	06			
Ethyl tert-butyl ether	25.6	0.50	ug/l	20.0		128	75-130			
Methyl tert-butyl ether	25.1	0.50	11	20.0		126	65-125			QC0
tert-Amyl methyl ether	25.8	0.50	n	20.0		129	80-115			QC0
tert-Butyl alcohol	320	20	a	400		80	75-150			
Xylenes (total)	59.0	0.50	11	60.0		98	85-125			
Ethanol	312	100	u	400		78	70-135			
Di-isopropyl ether	24.2	0.50	Į!	20.0		121	75-125			
Benzene	23.0	0.50	n	20.0		115	80-140			
Bromodichloromethane	24.6	0.50	11	20.0		123	65-150			
Bromoform	23.5	0.50	"	20.0		118	60-150			
Bromomethane	25.2	1.0	11	20.0		126	15-150			
Carbon tetrachloride	24.4	0.50	"	20.0		122	65-150			
Chlorobenzene	21.6	0.50	Ħ	20.0		108	85-135			
Chloroethane	21.3	1.0	11	20.0		106	45-150			
Chloroform	23.2	0.50	51	20,0		116	75-135			
Chloromethane	21.7	0.50	#	20.0		108	30-150			
Dibromochloromethane	24.5	0.50	н	20.0		122	45-150			

Sequoia Analytical - Morgan Hill

601 North McDowell Blvd. Petaluma CA, 94954 Project: Exxon 7-0277

Project Number: 7-0277
Project Manager: James Chappell

MPC0234 Reported: 03/24/06 13:22

Purgeables by EPA Method 624 - Quality Control Sequoia Analytical - Morgan Hill

Analyte	D14	Evaluation	** .	Spike	Source		%REC		RPD	
	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 6C15007 - EPA 5030B P/T										
LCS (6C15007-BS1)				Prepared	& Analyze	ed: 03/15/0	06			
1,2-Dichlorobenzene	21.0	0.50	ug/l	20.0		105	80-130	 -		·
1,3-Dichlorobenzene	21.4	0.50	ır	20.0		107	85-140			
1,4-Dichlorobenzene	21.2	0.50	If	20.0		106	85-130			
1,1-Dichloroethane	23.2	0.50	It	20.0		116	35-150			
1,2-Dichloroethane	22.6	0.50	If	20.0		113	35-150			
1,1-Dichloroethene	23.1	0.50	lt .	20.0		116	85-135			
trans-1,2-Dichloroethene	23.7	0.50	If	20.0		118	75-150			
1,2-Dichloropropane	23.0	0.50	н	20.0		115	55-150			
cis-1,3-Dichloropropene	24.3	0.50	и	20.0		122	50-150			
trans-1,3-Dichloropropene	24.9	0.50	*1	20.0		124	45-150			
Ethylbenzene	19.4	0.50	ır	20.0		97	80-135			
Methylene chloride	24.6	0.50	17	20.0		123	40-150			
1,1,2,2-Tetrachloroethane	23.0	0.50	n	20.0		115	55-150			
Tetrachloroethene	24.3	0.50	II	20.0		122	75-150			
Toluene	22.7	0.50	ti	20.0		114	80-140			
1,1,1-Trichloroethane	24.3	0.50	11	20.0		122	70-150			
1,1,2-Trichloroethane	23.8	0.50	If	20.0		119	55-150			
Trichloroethene	22,8	0.50	11	20.0		114	30-150			
Trichlorofluoromethane	23.3	0.50	11	20.0		116	15-150			
Vinyl chloride	23.0	0.50	11	20.0		115	50-150			
Surrogate: 1,2-Dichloroethane-d4	2.91		"	2.50		116	50-150			-
Surrogate: 1,4-Difluorobenzene	2.15		"	2.00		108	70-140			
Surrogate: 4-Bromofluorobenzene	2.47		u	2.50		99	70-120			
LCS Dup (6C15007-BSD1) Xylenes (total)	54.5	0,50	//		& Analyze					
tert-Butyl alcohol	339		ug/l	60.0		91	85-125	8	20	
·	24.7	20		400		85	75-150	6	25	
tert-Amyl methyl ether		0.50	ti	20.0		124	80-115	4	15	QC0
Methyl tert-butyl ether	23.9	0.50	"	20.0		120	65-125	5	20	
Ethyl tert-butyl ether	24.0	0.50	If	20.0		120	75-130	6	25	

Sequoia Analytical - Morgan Hill

Project Number: 7-0277
Project Manager: James Chappell

MPC0234 Reported: 03/24/06 13:22

Purgeables by EPA Method 624 - Quality Control Sequoia Analytical - Morgan Hill

Analyte	Result	Evaluation Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6C15007 - EPA 5030B P/T										
LCS Dup (6C15007-BSD1)				Prepared	& Analyz	ed: 03/15/0	06			
Ethanol	416	100	ug/l	400		104	70-135	29	35	
Di-isopropyl ether	22.7	0.50	11	20.0		114	75-125	6	15	
Benzene	21.4	0.50	ıı	20.0		107	80-140	7	10	
Bromodichloromethane	22.6	0.50	11	20.0		113	65-150	8	30	
Bromoform	22.4	0.50	н	20.0		112	60-150	5	25	
Bromomethane	21.6	1.9	17	20.0		108	15-150	15	35	
Carbon tetrachloride	22.2	0.50	a	20.0		111	65-150	9	20	
Chlorobenzene	19.7	0.50	u	20.0		98	85-135	9	15	
Chloroethane	19.1	1.0	u	20.0		96	45-150	11	45	
Chloroform	21.2	0.50	#1	20.0		106	75-135	9	15	
Chloromethane	20.0	0.50		20.0		100	30-150	8	35	
Dibromochloromethane	22.6	0.50	11	20.0		113	45-150	8	35	
1,2-Dichlorobenzene	19.1	0.50	"	20.0		96	80-130	9	25	
1,3-Dichlorobenzene	19.5	0.50	n	20.0		98	85-140	9	25	
1,4-Dichlorobenzene	19.0	0.50	If	20.0		95	85-130	11	25	
1,1-Dichloroethane	21.2	0,50	n	20.0		106	35-150	9	35	
1,2-Dichloroethane	21.5	0.50	"	20.0		108	35-150	5	35	
1,1-Dichloroethene	21.0	0.50	H	20.0		105	85-135	10	15	
trans-1,2-Dichloroethene	21.6	0.50	п	20.0		108	75-150	9	20	
1,2-Dichloropropane	21.3	0.50	11	20.0		106	55-150	8	20	
cis-1,3-Dichloropropene	22.5	0.50	**	20.0		112	50-150	8	35	
trans-1,3-Dichloropropene	23.2	0.50	11	20.0		116	45-150	7	35	
Ethylbenzene	18.1	0.50	n	20.0		90	80-135	7	30	
Methylene chloride	23.0	0.50	11	20.0		115	40-150	7	30	
1,1,2,2-Tetrachloroethane	21.0	0.50	#	20.0		105	55-150	9	35	
Tetrachloroethene	22.3	0.50	tt	20.0		112	75-150	9	30	
Toluene	21.1	0.50	п	20.0		106	80-140	7	10	
1,1,1-Trichloroethane	21.9	0.50	11	20.0		110	70-150	10	15	
1,1,2-Trichloroethane	22.5	0.50	Ħ	20.0		112	55-150	6	30	

Sequoia Analytical - Morgan Hill

Project: Exxon 7-0277
Project Number: 7-0277

Project Manager: James Chappell

MPC0234 Reported: 03/24/06 13:22

Purgeables by EPA Method 624 - Quality Control Sequoia Analytical - Morgan Hill

Analyte	Result	Evaluation Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6C15007 - EPA 5030B P/T										
LCS Dup (6C15007-BSD1)				Prepared	& Analyze	ed: 03/15/	06			
Trichloroethene	21.2	0.50	п	20.0		106	30-150	7	10	
Trichlorofluoromethane	21.2	0.50	"	20.0		106	15-150	9	25	
Vinyl chloride	21.2	0.50	tt.	20.0		106	50-150	8	35	
Surrogate: 1,2-Dichloroethane-d4	2.78		"	2.50		111	50-150			
Surrogate: 1,4-Difluorobenzene	2.12		"	2.00		106	70-140			
Surrogate: 4-Bromofluorobenzene	2.35		"	2.50		94	70-120			

601 North McDowell Blvd. Petaluma CA, 94954 Project: Exxon 7-0277

Project Number: 7-0277
Project Manager: James Chappell

MPC0234 Reported:

03/24/06 13:22

Notes and Definitions

QC01 The percent recovery was above the control limits.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

CHAIN OF CUSTODY RECORD

Page _ l of _ l

			 			·		<u> </u>													
Test/Ame	erica	} '	Consultant Nam			lutions, Inc.			Exxo	nMok	oil En	gine	er Jei	nnife	er Sec	llach	ek				
1 1 1 1	GORPORAT	. Ε D		s: 601 North		· · · · · · · · · · · · · · · · · · ·	- · · · · · · · · · · · · · · · · · · ·		Tel	lepho	ne N	umbe	er <u>510</u>	- 547-	8196						
(615) 726-0177			City/State/Zi				····				Acco	unt #	7: 102	228							
Nashville Division			Project Manage	er <u>James Cl</u>	nappell							PO#	f: <u>450</u>	5885	615						
2960 Foster Creighton			lephone Numbe			· <u>· </u>		_		F	acili	ty ID	# 7-0	277							
Nashville, TN 37204			ERI Job Numbe		1X			_			Glob	al ID:	#								
ExonMobil		Samı	pler Name: (Prin	1)	n He	· vu a L	^	-		Si	te Ad	ldres	s 110	1 Yul	lupa A	venu	8				
		Sa	mpler Signature	:- <u> </u>	. 41.	TAME	<u> </u>			City	y, Sta	te Zi _l	p San	ta Ro	osa, C	allforr	nia				
TAT		PROVIDE:	Special Instr	uctions:		·			T-	Model		_									
☐ 24 hour ☐ 72 h	our	EDF Report	* Full Run	Includir	a RTEY	MIDE	nd Owner		\vdash	Matri	IX 	+		T	_	TAN-	alyze	For:	Г		
☐ 48 hour ☐ 96 h		ADI Roport	, an itan	, meraan	ig Dick,	, MIIDE A	na Oxyge	enates				624*		MTBE							
☑8 day MPC023	34											EP/	8015	BTEX&MTBE							
Sample ID	/ Descrip	otion	DATE	TIME	NUMBER	Water	Soil	Vapor	VOC's EPA	TPHg	80218	İ									
oj w	V-INF		3/2/06	2/06/16 3 × HCL 6							_	×	X	-	<u> </u>	 	-			\dashv	-
02 W-	INT 1		· · ·	1. 11.00									X	x					_	+	-
03 W-	INT 2		,	1530		Х	HCL	6 Voa's	X			 	X	x	 				+	+	+
o4 w	-EFF			1500		Х	HCL	6 Voa's	x			Х	x						\dashv	\dashv	+
																			7	\dashv	_
																			1	+	+
			<u> </u>															\neg	-	\top	+
		· <u></u>																	\top	\top	+
																			十	+	1
							_										7		_	1	
																\dashv	\dashv	十	\top	\dagger	-
				,									-	- 	_	\dashv	+	+	-	+	
Relinquished by: J He	vma 1	M Date 3	161 04	Time (0	00	Received by	"Ollo	ruzo	3-	- (pro)	Time	102	100	•		eratur	е Орс	on Rec	•	_	ا پ ^٥ د
Relinquished by:	10/W	Date 2	r-6-06	Time 1	240	Received by	TestAmerica	:			lime	· .						ers Inta eadspa		100 to	
for	M	3-	3-6-06 1720 Physin 3/4						20												

SEQUOIA ANALYTICAL SAMPLE RECEIPT LOG

CLIENT NAME: ERI/EXXONI REC. BY (PRINT) PH		•		DATE REC'D AT LAB: TIME REC'D AT LAB: DATE LOGGED IN:				For Regulatory Purposes?		
			_						DRINKING WATER YES (NO WASTE WATER YES) NO	
WORKORDER: MPC0234		•	<u>.</u>					•		
			•	•						
CIRCLE THE APPRO	PRIATE RESPONSE	LAB	DASH #	CLIENT ID	CONTAINER DESCRIPTION	PRESERV ATIVE	рН	SAMPLE MATRIX	DATE SAMPLED	REMARKS: CONDITION (ETC.)
1. Custody Seal(s)	Present Absent									
	Intact / Broken*						٠.			
2. Chain-of-Custody.	Present / Absent*				·					
3. Traffic Reports or										
Packing List:	Present (Absent)									
4. Airbill:	Airbill / Sticker	<u>-</u>						/		
	Present (Absent)					· · · · · ·	_/	· ·		<u> </u>
5. Airbill #:			ļ <u>.</u>			<u> </u>				
6. Sample Labels:	(Present / Absent							-,		·
7. Sample IDs:	Listed / Not Listed		·		77	10/				
	on Chain-of-Custody				/	/				
8. Sample Condition:	(intact / Broken* /			•					-	· · · · · · · · · · · · · · · · · · ·
	Leaking*									
9. Does information on					12 / C					
traffic reports and s		·			\times $ \mid$					·
agree?	(Ýes/No*			-						
10. Sample received withi	n '(Y⊕s/No*			/						
hold time?	······································						· -			
11. Adequate sample volu received?	Yes / No*			/						
12. Proper preservatives u					:					
13. Trip Blank / Temp Blank Received?										
(circle which, if yes)	Yes/No*			/						
14. Read Temp:	2.8°C									
Corrected Temp:	2.8°C		/							
Is corrected temp 4 +/										·
(Acceptance range for samples r		. /					-			
**Exception (if any): METALS / DFF ON ICE		/								
or Problem COC										
		*IF CIPC	LFD. C	ONTACT PROJECT MA	ANAGER AND	ATTACH R	ECORE	OF RES	DLUTION.	4)

SRL Revision 7 Replaces Rev 5 (07/13/04) Effective 07/19/05

Page of